Anselmet F., Gagne Y., Hopfinger E. J. & Antonia R. A.
1984
High-order velocity structure functions in turbulent shear flows. J. Fluid Mech.
140, 63–89.

Arneodo A., Baudet C., Belin F., Benzi R., Castaing B., Chabaud B., Chavarria R., Ciliberto S., Camussi R., Chilla F.
et al.
1996
Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhys. Lett.
34, 411.

Belin F., Tabeling P. & Willaime H.
1996
Exponents of the structure function in a low temperature helium experiment. Physica D
93, 52.

Benzi R., Ciliberto S., Baudet C. & Chavarria G. R.
1995
On the scaling of three-dimensional homogeneous and isotropic turbulence. Physica D
80 (4), 385–398.

Benzi R., Ciliberto S., Tripiccione R., Baudet C., Massaioli F. & Succi S.
1993
Extended self-similarity in turbulent flows. Phys. Rev. E
48 (1), R29–R32.

Brauckmann H. J. & Eckhardt B.
2013
Direct numerical simulations of local and global torque in Taylor–Couette flow up to *Re* = 30 000. J. Fluid Mech.
718, 398–427.

Chandran D., Baidya R., Monty J. P. & Marusic I.
2017
Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers. J. Fluid Mech.
826, R1.

Chung D., Marusic I., Monty J. P., Vallikivi M. & Smits A. J.
2015
On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows. Exp. Fluids
56 (7), 141.

Davidson P. A.
2004
Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.

Davidson P. A., Krogstad P. A. & Nickels T. B.
2006a
A refined interpretation of the logarithmic structure function law in wall layer turbulence. Phys. Fluids
18 (6), 065112.

Davidson P. A., Nickels T. B. & Krogstad P.-Å.
2006b
The logarithmic structure function law in wall-layer turbulence. J. Fluid Mech.
550, 51–60.

Del Alamo J. C., Jiménez J., Zandonade P. & Moser R.D
2004
Scaling of the energy spectra of turbulent channels. J. Fluid Mech.
500, 135–144.

Fardin M. A., Perge C. & Taberlet N.
2014
‘The hydrogen atom of fluid dynamics’–introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt.
10 (20), 3523–3535.

Frisch U.
1995
Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.

Grossmann S. & Lohse D.
2011
Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids
23 (4), 045108.

Grossmann S., Lohse D. & Sun C.
2016
High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech.
48, 53–80.

Huisman S. G., Lohse D. & Sun C.
2013a
Statistics of turbulent fluctuations in counter-rotating Taylor–Couette flows. Phys. Rev. E
88 (6), 063001.

Huisman S. G., Scharnowski S., Cierpka C., Kähler C. J, Lohse D. & Sun C.
2013b
Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett.
110 (26), 264501.

Huisman S.G, Van Der Veen R. C., Sun C. & Lohse D.
2014
Multiple states in highly turbulent Taylor–Couette flow. Nature Commun.
5, 3820.

Hultmark M., Vallikivi M., Bailey S. C. C. & Smits A. J.
2012
Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett.
108 (9), 094501.

Hutchins N. & Marusic I.
2007
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.
579, 1–28.

Hutchins N., Nickels T. B., Marusic I. & Chong M. S.
2009
Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech.
635, 103–136.

Jiménez J.
1998
Turbulent velocity fluctuations need not be Gaussian. J. Fluid Mech.
376, 139–147.

Kolmogorov A. N.
1941
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR
30 (4), 301–305.

Kolmogorov A. N.
1962
A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech.
13 (01), 82–85.

Lee M. & Moser R. D.
2015
Direct numerical simulation of turbulent channel flow up to *Re*
_{𝜏} ≈ 5200. J. Fluid Mech.
774, 395–415.

Marusic I., Mckeon B. J., Monkewitz P. A., Nagib H. M., Smits A. J. & Sreenivasan K. R.
2010
Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids
22 (6), 065103.

Marusic I., Monty J. P., Hultmark M. & Smits A. J.
2013
On the logarithmic region in wall turbulence. J. Fluid Mech.
716, R3.

Meneveau C. & Marusic I.
2013
Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech.
719, R1.

Nagib H. M. & Chauhan K. A.
2008
Variations of von Kármán coefficient in canonical flows. Phys. Fluids
20 (10), 1518.

Nickels T. B., Marusic I., Hafez S. & Chong M. S.
2005
Evidence of the *k*
^{-1} law in a high-Reynolds-number turbulent boundary layer. Phy. Rev. Lett.
95 (7), 074501.

Ostilla-Mónico R., Lohse D. & Verzicco R.
2016a
Effect of roll number on the statistics of turbulent Taylor–Couette flow. Phys. Rev. Fluids
1 (5), 054402.

Ostilla-Mónico R., van der Poel E. P., Verzicco R., Grossmann S. & Lohse D.
2014
Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech.
761, 1–26.

Ostilla-Mónico R., Verzicco R., Grossmann S. & Lohse D.
2016b
The near-wall region of highly turbulent Taylor–Couette flow. J. Fluid Mech.
788, 95–117.

Ostilla-Mónico R., Verzicco R. & Lohse D.
2015
Effects of the computational domain size on direct numerical simulations of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids
27, 025110.

Perry A. E. & Chong M. S.
1982
On the mechanism of wall turbulence. J. Fluid Mech.
119, 173–217.

Perry A. E., Henbest S. & Chong M. S.
1986
A theoretical and experimental study of wall turbulence. J. Fluid Mech.
165, 163–199.

Perry A. E. & Marusic I.
1995
A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech.
298, 361–388.

Pirozzoli S. & Bernardini M.
2013
Probing high-Reynolds-number effects in numerical boundary layers. Phys. Fluids
25 (2), 021704.

Sillero J. A., Jiménez J. & Moser R. D.
2013
One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿^{+} ≈ 2000. Phys. Fluids
25 (10), 105102.

de Silva C. M., Marusic I., Woodcock J. D. & Meneveau C.
2015
Scaling of second-and higher-order structure functions in turbulent boundary layers. J. Fluid Mech.
769, 654–686.

de Silva C. M., Krug D., Lohse D. & Marusic I.
2017
Universality of the energy-containing structures in wall-bounded turbulence. J. Fluid Mech.
823, 498–510.

Smits A. J., Monty J., Hultmark M., Bailey S. C. C., Hutchins N. & Marusic I.
2011
Spatial resolution correction for wall-bounded turbulence measurements. J. Fluid Mech.
676, 41–53.

Stevens R. J. A. M., Wilczek M. & Meneveau C.
2014
Large-eddy simulation study of the logarithmic law for second-and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech.
757, 888–907.

Talluru K. M., Baidya R., Hutchins N. & Marusic I.
2014
Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech.
746, R1.

Taylor G. I.
1923
Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc. Lond. A
104, 213–218.

Tomkins C. D. & Adrian R. J.
2003
Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech.
490, 37–74.

Toschi F., Amati G., Succi S., Benzi R. & Piva R.
1999
Intermittency and structure functions in channel flow turbulence. Phys. Rev. Lett.
82 (25), 5044.

Townsend A. A.
1976
The Structure of Turbulent Shear Flow. Cambridge University Press.

Vallikivi M., Hultmark M., Bailey S. C. C. & Smits A. J.
2011
Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe. Exp. Fluids
51 (6), 1521–1527.

Woodcock J. D. & Marusic I.
2015
The statistical behaviour of attached eddies. Phys. Fluids
27 (1), 015104.

Yang X. I. A., Marusic I. & Meneveau C.
2016a
Moment generating functions and scaling laws in the inertial layer of turbulent wall-bounded flows. J. Fluid Mech.
791, R2.

Yang X. I. A., Meneveau C., Marusic I. & Biferale L.
2016b
Extended self-similarity in moment-generating-functions in wall-bounded turbulence at high Reynolds number. Phys. Rev. Fluids
1 (4), 044405.