Skip to main content
×
Home

Statistics of turbulence in the energy-containing range of Taylor–Couette compared to canonical wall-bounded flows

  • Dominik Krug (a1), Xiang I. A. Yang (a2), Charitha M. de Silva (a1), Rodolfo Ostilla-Mónico (a3) (a4), Roberto Verzicco (a5) (a6), Ivan Marusic (a1) and Detlef Lohse (a6) (a7)...
Abstract

Considering structure functions of the streamwise velocity component in a framework akin to the extended self-similarity hypothesis (ESS), de Silva et al. (J. Fluid Mech., vol. 823, 2017, pp. 498–510) observed that remarkably the large-scale (energy-containing range) statistics in canonical wall-bounded flows exhibit universal behaviour. In the present study, we extend this universality, which was seen to encompass also flows at moderate Reynolds number, to Taylor–Couette flow. In doing so, we find that also the transversal structure function of the spanwise velocity component exhibits the same universal behaviour across all flow types considered. We further demonstrate that these observations are consistent with predictions developed based on an attached-eddy hypothesis. These considerations also yield a possible explanation for the efficacy of the ESS framework by showing that it relaxes the self-similarity assumption for the attached-eddy contributions. By taking the effect of streamwise alignment into account, the attached-eddy model predicts different behaviour for structure functions in the streamwise and in the spanwise directions and that this effect cancels in the ESS framework – both consistent with the data. Moreover, it is demonstrated here that also the additive constants, which were previously believed to be flow dependent, are indeed universal at least in turbulent boundary layers and pipe flow where high Reynolds number data are currently available.

Copyright
Corresponding author
Email address for correspondence: dominik.krug@unimelb.edu.au
References
Hide All
Anselmet F., Gagne Y., Hopfinger E. J. & Antonia R. A. 1984 High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 6389.
Arneodo A., Baudet C., Belin F., Benzi R., Castaing B., Chabaud B., Chavarria R., Ciliberto S., Camussi R., Chilla F. et al. 1996 Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhys. Lett. 34, 411.
Belin F., Tabeling P. & Willaime H. 1996 Exponents of the structure function in a low temperature helium experiment. Physica D 93, 52.
Benzi R., Ciliberto S., Baudet C. & Chavarria G. R. 1995 On the scaling of three-dimensional homogeneous and isotropic turbulence. Physica D 80 (4), 385398.
Benzi R., Ciliberto S., Tripiccione R., Baudet C., Massaioli F. & Succi S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48 (1), R29R32.
Brauckmann H. J. & Eckhardt B. 2013 Direct numerical simulations of local and global torque in Taylor–Couette flow up to Re = 30 000. J. Fluid Mech. 718, 398427.
Chandran D., Baidya R., Monty J. P. & Marusic I. 2017 Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 826, R1.
Chung D., Marusic I., Monty J. P., Vallikivi M. & Smits A. J. 2015 On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows. Exp. Fluids 56 (7), 141.
Davidson P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.
Davidson P. A., Krogstad P. A. & Nickels T. B. 2006a A refined interpretation of the logarithmic structure function law in wall layer turbulence. Phys. Fluids 18 (6), 065112.
Davidson P. A., Nickels T. B. & Krogstad P.-Å. 2006b The logarithmic structure function law in wall-layer turbulence. J. Fluid Mech. 550, 5160.
Del Alamo J. C., Jiménez J., Zandonade P. & Moser R.D 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.
Fardin M. A., Perge C. & Taberlet N. 2014 ‘The hydrogen atom of fluid dynamics’–introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt. 10 (20), 35233535.
Frisch U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
Grossmann S. & Lohse D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23 (4), 045108.
Grossmann S., Lohse D. & Sun C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.
Huisman S. G., Lohse D. & Sun C. 2013a Statistics of turbulent fluctuations in counter-rotating Taylor–Couette flows. Phys. Rev. E 88 (6), 063001.
Huisman S. G., Scharnowski S., Cierpka C., Kähler C. J, Lohse D. & Sun C. 2013b Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110 (26), 264501.
Huisman S.G, Van Der Veen R. C., Sun C. & Lohse D. 2014 Multiple states in highly turbulent Taylor–Couette flow. Nature Commun. 5, 3820.
Hultmark M., Vallikivi M., Bailey S. C. C. & Smits A. J. 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108 (9), 094501.
Hutchins N. & Marusic I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Hutchins N., Nickels T. B., Marusic I. & Chong M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.
Jiménez J. 1998 Turbulent velocity fluctuations need not be Gaussian. J. Fluid Mech. 376, 139147.
Kolmogorov A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30 (4), 301305.
Kolmogorov A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (01), 8285.
Lee M. & Moser R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≈ 5200. J. Fluid Mech. 774, 395415.
Marusic I., Mckeon B. J., Monkewitz P. A., Nagib H. M., Smits A. J. & Sreenivasan K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.
Marusic I., Monty J. P., Hultmark M. & Smits A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
Meneveau C. & Marusic I. 2013 Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech. 719, R1.
Nagib H. M. & Chauhan K. A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20 (10), 1518.
Nickels T. B., Marusic I., Hafez S. & Chong M. S. 2005 Evidence of the k -1 law in a high-Reynolds-number turbulent boundary layer. Phy. Rev. Lett. 95 (7), 074501.
Ostilla-Mónico R., Lohse D. & Verzicco R. 2016a Effect of roll number on the statistics of turbulent Taylor–Couette flow. Phys. Rev. Fluids 1 (5), 054402.
Ostilla-Mónico R., van der Poel E. P., Verzicco R., Grossmann S. & Lohse D. 2014 Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.
Ostilla-Mónico R., Verzicco R., Grossmann S. & Lohse D. 2016b The near-wall region of highly turbulent Taylor–Couette flow. J. Fluid Mech. 788, 95117.
Ostilla-Mónico R., Verzicco R. & Lohse D. 2015 Effects of the computational domain size on direct numerical simulations of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids 27, 025110.
Perry A. E. & Chong M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.
Perry A. E., Henbest S. & Chong M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.
Perry A. E. & Marusic I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.
Pirozzoli S. & Bernardini M. 2013 Probing high-Reynolds-number effects in numerical boundary layers. Phys. Fluids 25 (2), 021704.
Sillero J. A., Jiménez J. & Moser R. D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 25 (10), 105102.
de Silva C. M., Marusic I., Woodcock J. D. & Meneveau C. 2015 Scaling of second-and higher-order structure functions in turbulent boundary layers. J. Fluid Mech. 769, 654686.
de Silva C. M., Krug D., Lohse D. & Marusic I. 2017 Universality of the energy-containing structures in wall-bounded turbulence. J. Fluid Mech. 823, 498510.
Smits A. J., Monty J., Hultmark M., Bailey S. C. C., Hutchins N. & Marusic I. 2011 Spatial resolution correction for wall-bounded turbulence measurements. J. Fluid Mech. 676, 4153.
Stevens R. J. A. M., Wilczek M. & Meneveau C. 2014 Large-eddy simulation study of the logarithmic law for second-and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888907.
Talluru K. M., Baidya R., Hutchins N. & Marusic I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.
Taylor G. I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc. Lond. A 104, 213218.
Tomkins C. D. & Adrian R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.
Toschi F., Amati G., Succi S., Benzi R. & Piva R. 1999 Intermittency and structure functions in channel flow turbulence. Phys. Rev. Lett. 82 (25), 5044.
Townsend A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Vallikivi M., Hultmark M., Bailey S. C. C. & Smits A. J. 2011 Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe. Exp. Fluids 51 (6), 15211527.
Woodcock J. D. & Marusic I. 2015 The statistical behaviour of attached eddies. Phys. Fluids 27 (1), 015104.
Yang X. I. A., Marusic I. & Meneveau C. 2016a Moment generating functions and scaling laws in the inertial layer of turbulent wall-bounded flows. J. Fluid Mech. 791, R2.
Yang X. I. A., Meneveau C., Marusic I. & Biferale L. 2016b Extended self-similarity in moment-generating-functions in wall-bounded turbulence at high Reynolds number. Phys. Rev. Fluids 1 (4), 044405.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 106 *
Loading metrics...

Abstract views

Total abstract views: 174 *
Loading metrics...

* Views captured on Cambridge Core between 6th October 2017 - 21st November 2017. This data will be updated every 24 hours.