Skip to main content Accessibility help
×
Home

Transfer of mass and momentum at rough and porous surfaces

  • Uǧis Lācis (a1), Y. Sudhakar (a1) (a2), Simon Pasche (a1) and Shervin Bagheri (a1)

Abstract

The surface texture of materials plays a critical role in wettability, turbulence and transport phenomena. In order to design surfaces for these applications, it is desirable to characterise non-smooth and porous materials by their ability to exchange mass and momentum with flowing fluids. While the underlying physics of the tangential (slip) velocity at a fluid–solid interface is well understood, the importance and treatment of normal (transpiration) velocity and normal stress is unclear. We show that, when the slip velocity varies at an interface above the texture, a non-zero transpiration velocity arises from mass conservation. The ability of a given surface texture to accommodate a normal velocity of this kind is quantified by a transpiration length. We further demonstrate that normal momentum transfer gives rise to a pressure jump. For a porous material, the pressure jump can be characterised by so-called resistance coefficients. By solving five Stokes problems, the introduced measures of slip, transpiration and resistance can be determined for any anisotropic non-smooth surface consisting of regularly repeating geometric patterns. The proposed conditions are a subset of the effective boundary conditions derived from formal multi-scale expansion. We validate and demonstrate the physical significance of the effective conditions on two canonical problems – a lid-driven cavity and a turbulent channel flow, both with non-smooth bottom surfaces.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Transfer of mass and momentum at rough and porous surfaces
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Transfer of mass and momentum at rough and porous surfaces
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Transfer of mass and momentum at rough and porous surfaces
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: ugis@mech.kth.se

References

Hide All
Agyenim, F., Hewitt, N., Eames, P. & Smyth, M. 2010 A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sust. Energ. Rev. 14 (2), 615628.
Angot, P., Goyeau, B. & Ochoa-Tapia, J. A. 2017 Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: jump conditions. Phys. Rev. E 95 (6), 063302.
Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1), 197207.
Bolanos, S. J. & Vernescu, B. 2017 Derivation of the Navier slip and slip length for viscous flows over a rough boundary. Phys. Fluids 29 (5), 057103.
Bottaro, A. 2019 Flow over natural or engineered surfaces: an adjoint homogenization perspective. J. Fluid Mech. 877, P1.
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.
Carraro, T., Goll, C., Marciniak-Czochra, A. & Mikelić, A. 2013 Pressure jump interface law for the Stokes–Darcy coupling: confirmation by direct numerical simulations. J. Fluid Mech. 732, 510536.
Carraro, T., Goll, C., Marciniak-Czochra, A. & Mikelić, A. 2015 Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization. Comput. Meth. Appl. Mech. Engng 292, 195220.
Carraro, T., Marušić-Paloka, E. & Mikelić, A. 2018 Effective pressure boundary condition for the filtration through porous medium via homogenization. Nonlinear Anal.-Real 44, 149172.
Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., Wilkinson, C. D. W. & Oreffo, R. O. C. 2007 The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6 (12), 9971003.
Ene, H. I. & Sanchez-Palencia, E. 1975 Equations et phénom‘enes de surface pour l’écoulement dans un modèle de milieu poreux. J. Méc. 14, 73108.
García-Mayoral, R. & Jiménez, J. 2011 Drag reduction by riblets. Proc. R. Soc. Lond. A 369 (1940), 14121427.
García-Mayoral, R., Gómez-de Segura, G. & Fairhall, C. T. 2019 The control of near-wall turbulence through surface texturing. Fluid Dyn. Res. 51 (1), 011410.
Gupte, S. K. & Advani, S. G. 1997 Flow near the permeable boundary of a porous medium: an experimental investigation using lda. Exp. Fluids 22 (5), 408422.
Haghighi, E. & Kirchner, J. W. 2017 Near-surface turbulence as a missing link in modeling evapotranspiration-soil moisture relationships. Water Resour. Res. 53 (7), 53205344.
Han, Y., Ganatos, P. & Weinbaum, S. 2005 Transmission of steady and oscillatory fluid shear stress across epithelial and endothelial surface structures. Phys. Fluids 17 (3), 031508.
Hecht, F. 2012 New development in freefem++. J. Numer. Maths 20 (3–4), 251265.
Hou, J. S., Holmes, M. H., Lai, W. M. & Mow, V. C. 1989 Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. ASME. J Biomech Engng 111 (1), 7887.
Jäger, W. & Mikelić, A. 2001 Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22, 20062028.
Jäger, W. & Mikelić, A. 2009 Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Trans. Porous Med. 78 (3), 489508.
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Jiménez, J., Uhlmann, M., Pinelli, A. & Kawahara, G. 2001 Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89117.
Jiménez Bolaños, S. & Vernescu, B. 2017 Derivation of the Navier slip and slip length for viscous flows over a rough boundary. Phys. Fluids 29 (5), 057103.
Kamrin, K., Bazant, M. Z. & Stone, H. A. 2010 Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. J. Fluid Mech. 658, 409437.
Kamrin, K. & Stone, H. A. 2011 The symmetry of mobility laws for viscous flow along arbitrarily patterned surfaces. Phys. Fluids 23, 031701.
Lācis, U.2019 Note on application of the TR model for (poro-)elastic surfaces. Collection of notes web, https://www.bagherigroup.com/theses–reports–notes/.
Lācis, U. & Bagheri, S. 2016 A framework for computing effective boundary conditions at the interface between free fluid and a porous medium. J. Fluid Mech. 812, 866889.
Lācis, U. & Bagheri, S.2016–2019 https://github.com/UgisL/flowMSE.
Lācis, U., Zampogna, G. A. & Bagheri, S. 2017 A computational continuum model of poroelastic beds. Proc. R. Soc. Lond. A 473, 20160932.
Laloui, L., Nuth, M. & Vulliet, L. 2006 Experimental and numerical investigations of the behaviour of a heat exchanger pile. Intl J. Numer. Anal. Meth. 30 (8), 763781.
Le Bars, M. & Grae Worster, M. 2006 Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149173.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 = 5200. J. Fluid Mech. 774, 395415.
Levy, T. & Sanchez-Palencia, E. 1975 On boundary conditions for fluid flow in porous media. Intl J. Engng Sci. 13, 923940.
Luchini, P. 2013 Linearized no-slip boundary conditions at a rough surface. J. Fluid Mech. 737, 349367.
Luchini, P. 2017 Universality of the turbulent velocity profile. Phys. Rev. Lett. 118, 224501.
Luchini, P., Manzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87109.
Marciniak-Czochra, A. & Mikelić, A. 2012 Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization. Multiscale Model. Simul. 10 (2), 285305.
Mehendale, S. S., Jacobi, A. M. & Shah, R. K. 2000 Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design. Appl. Mech. Rev. 53 (7), 175193.
Mei, C. C. & Vernescu, B. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific Publishing.
Mikelić, A. & Jäger, W. 2000 On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Maths 60 (4), 11111127.
Miksis, M. J. & Davis, S. H. 1994 Slip over rough and coated surfaces. J. Fluid Mech. 273, 125139.
Millikan, C. B. 1939 A critical discussion of turbulent flow in channels and circular tubes. In Proceedings of the 5th International Congress on Applied Mechanics (Cambridge, MA, 1938), pp. 386392. Wiley.
Mohammadi, A. & Floryan, J. M. 2013 Pressure losses in grooved channels. J. Fluid Mech. 725, 2354.
Mosthaf, K., Helmig, R. & Or, D. 2014 Modeling and analysis of evaporation processes from porous media on the REV scale. Water Resour. Res. 50 (2), 10591079.
Navier, C.-L. 1823 Mémoire sur les lois du mouvement des fluides. Mém. Acad. R. Sci. Inst. France 6 (1823), 389440.
Nikuradse, J. 1950 Laws of Flow in Rough Pipes. National Advisory Committee for Aeronautics.
Ochoa-Tapia, J. A. & Whitaker, S. 1995 Momentum transfer at the boundary between a porous medium and a homogeneous fluid–I. Theoretical development. Intl J. Heat Mass Transfer 38 (14), 26352646.
Orlandi, P. & Jiménez, J. 1994 On the generation of turbulent wall friction. Phys. Fluids 6 (2), 634641.
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 7, N73.
Perez, R. A. & Mestres, G. 2016 Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater. Sci. Engng C 61, 922939.
Prat, M. 2002 Recent advances in pore-scale models for drying of porous media. Chem. Engng J. 86 (1–2), 153164.
Quéré, D. 2008 Wetting and roughness. Annu. Rev. Mater. Res. 38, 7199.
Rosti, M. E., Cortelezzi, L. & Quadrio, M. 2015 Direct numerical simulation of turbulent channel flow over porous walls. J. Fluid Mech. 784, 396442.
Saffman, P. G. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Maths 50, 93101.
Sahraoui, M. & Kaviany, M. 1992 Slip and no-slip velocity boundary conditions at interface of porous, plain media. Intl J. Heat Mass Transfer 35 (4), 927943.
Sarkar, K. & Prosperetti, A. 1996 Effective boundary conditions for Stokes flow over a rough surface. J. Fluid Mech. 316, 223240.
Gómez de Segura, G., Fairhall, C. T., MacDonald, M., Chung, D. & García-Mayoral, R. 2018 Manipulation of near-wall turbulence by surface slip and permeability. J. Phys.: Conf. Ser. 1001 (1), 012011.
Stroock, A. D., Dertinger, S. K., Whitesides, G. M. & Ajdari, A. 2002 Patterning flows using grooved surfaces. Anal. Chem. 74 (20), 53065312.
Sudhakar, Y., Lācis, U., Pasche, S. & Bagheri, S.2019 Higher order homogenized boundary conditions for flows over rough and porous surfaces. Trans. Porous Med. (submitted) arXiv:1909.07125.
Vaca-González, J. J., Moncayo-Donoso, M., Guevara, J. M., Hata, Y., Shefelbine, S. J. & Garzón-Alvarado, D. A. 2018 Mechanobiological modeling of endochondral ossification: an experimental and computational analysis. Biomech. Model. Mechanobiol. 17 (3), 853875.
Valdés-Parada, F. J., Aguilar-Madera, C. G., Ochoa-Tapia, J. A. & Goyeau, B. 2013 Velocity and stress jump conditions between a porous medium and a fluid. Adv. Water Resour. 62, 327339.
Valdés-Parada, F. J., Alvarez-Ramírez, J., Goyeau, B. & Ochoa-Tapia, J. A. 2009 Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Trans. Porous Med. 78 (3), 439457.
Walsh, M. & Lindemann, A. 1984 Optimization and application of riblets for turbulent drag reduction. In 22nd Aerospace Sciences Meeting, p. 347. AIAA.
Wang, N., Zhang, C., Xiao, Y., Jin, G. & Li, L. 2018 Transverse hyporheic flow in the cross-section of a compound river system. Adv. Water Resour. 122, 263277.
Wenzel, R. N. 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28 (8), 988994.
Whitaker, S. 1998 The Method of Volume Averaging. Springer.
Zampogna, G. A. & Bottaro, A. 2016 Fluid flow over and through a regular bundle of rigid fibres. J. Fluid Mech. 792, 535.
Zampogna, G. A., Lācis, U., Bagheri, S. & Bottaro, A. 2019a Modeling waves in fluids flowing over and through poroelastic media. Intl J. Multiphase. Flow 110, 148164.
Zampogna, G. A., Magnaudet, J. & Bottaro, A. 2019b Generalized slip condition over rough surfaces. J. Fluid Mech. 858, 407436.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Transfer of mass and momentum at rough and porous surfaces

  • Uǧis Lācis (a1), Y. Sudhakar (a1) (a2), Simon Pasche (a1) and Shervin Bagheri (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed