We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
This book is intended for advanced undergraduate and graduate students in mechanical and aerospace engineering taking a course commonly called Principles of Turbomachinery or Aerospace Propulsion. It begins with a review of basic thermodynamics and fluid mechanics principles to motivate their application to aerothermodynamics and real-life design issues. This approach is ideal for the reader who will face practical situations and design decisions in the gas turbine industry. Among the features of the book are:An emphasis on the role of entropy in assessing machine performanceA timely review of flow structuresRevisiting the subsonic and supersonic De Laval nozzle as it applies to bladed turbomachinery componentsAn applied review of boundary layer principlesAnd highlighting the importance of invariant properties across a turbomachinery component in carrying out real computational tasks.The text is fully supported by over two hundred figures, numerous examples and homework problems.
The phenomena treated in this book all depend on the action of gravity on small density differences in a non-rotating fluid. The author gives a connected account of the various motions which can be driven or influenced by buoyancy forces in a stratified fluid, including internal waves, turbulent shear flows and buoyant convection. This excellent introduction to a rapidly developing field, first published in 1973, can be used as the basis of graduate courses in university departments of meteorology, oceanography and various branches of engineering. This edition is reprinted with corrections, and extra references have been added to allow readers to bring themselves up to date on specific topics. Professor Turner is a physicist with a special interest in laboratory modelling of small-scale geophysical processes. An important feature is the superb illustration of the text with many fine photographs of laboratory experiments and natural phenomena.
This book covers the physical side of colloidal science from the individual forces acting between particles smaller than a micrometer that are suspended in a liquid, through the resulting equilibrium and dynamic properties. A variety of internal forces both attractive and repulsive act in conjunction with Brownian motion and the balance between them all decides the phase behaviour. On top of this various external fields, such as gravity or electromagnetic fields, diffusion and non-Newtonian rheology produce complex effects, each of which is of important scientific and technological interest. The authors aim to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterised model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of the technological problems and design critical experiments. The main prerequisites for understanding the book are basic fluid mechanics, statistical mechanics and electromagnetism, though self contained reviews of each subject are provided at appropriate points. Some facility with differential equations is also necessary. Exercises are included at the end of each chapter, making the work suitable as a textbook for graduate courses in chemical engineering or applied mathematics. It will also be useful as a reference for individuals in academia or industry undertaking research in colloid science.
The discovery of coherent structures in turbulence has fostered the hope that the study of vortices will lead to models and an understanding of turbulent flow, thereby solving or at least making less mysterious one of the great unsolved problems of classical physics. Vortex dynamics is a natural paradigm for the field of chaotic motion and modern dynamical system theory. The emphasis in this monograph is on the classical theory of inviscid incompressible fluids containing finite regions of vorticity. The effects of viscosity, compressibility, inhomogeneity and stratification are enormously important in many fields of application, from hypersonic flight to global environmental fluid mechanics. However, this volume focuses on those aspects of fluid motion which are primarily controlled by the vorticity and are such that the effects of the other fluid properties are secondary.
Many of the topics in inviscid fluid dynamics are not only vitally important mechanisms in everyday life but they are also readily observable without any need for instrumentation. It is therefore stimulating when the mathematics that emerges when these phenomena are modelled is novel and suggestive of alternative methodologies. This book provides senior undergraduates who are already familiar with inviscid fluid dynamics with some of the basic facts about the modelling and analysis of viscous flows. It clearly presents the salient physical ideas and the mathematical ramifications with exercises designed to be an integral part of the text. By showing the basic theoretical framework which has developed as a result of the study of viscous flows, the book should be ideal reading for students of applied mathematics who should then be able to delve further into the subject and be well placed to exploit mathematical ideas throughout the whole of applied science.
This book serves as both a graduate text and a reference for engineers and scientists exploring the theoretical and computational aspects of the fluid dynamics and transport of sprays and droplets. Attention is given to the behavior of individual droplets, including the effects of forced convection due to relative droplet-gas motion, Stefan convection due to the vaporization or condensation of the liquid, multicomponent liquids (and slurries), and internal circulation of the liquid. This second edition contains more information on droplet-droplet interactions, the use of the mass-flux potential, conserved scalar variables, spatial averaging and the formulation of the multi-continua equations, the confluence of spatial averaging for sprays and filtering for turbulence, direct numerical simulations and large-eddy simulations for turbulent sprays, and high-pressure vaporization processes. Two new chapters introduce liquid-film vaporization as an alternative to sprays for miniature applications and a review of liquid-stream distortion and break-up theory.
Many phenomena in nature, engineering or society when seen at an intermediate distance, in space or time, exhibit the remarkable property of self-similarity: they reproduce themselves as scales change, subject to so-called scaling laws. It's crucial to know the details of these laws, so that mathematical models can be properly formulated and analysed, and the phenomena in question can be more deeply understood. In this 2003 book, the author describes and teaches the art of discovering scaling laws, starting from dimensional analysis and physical similarity, which are here given a modern treatment. He demonstrates the concepts of intermediate asymptotics and the renormalisation group as natural attributes of self-similarity and shows how and when these notions and tools can be used to tackle the task at hand, and when they cannot. Based on courses taught to undergraduate and graduate students, the book can also be used for self-study by biologists, chemists, astronomers, engineers and geoscientists.
Introduction to Computational Fluid Dynamics is a textbook for advanced undergraduate and first year graduate students in mechanical, aerospace and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practising engineers will find this particularly useful for reference and for continuing education.
It is over three hundred and fifty years since Torricelli discovered the law obeyed by fountains, yet fluid dynamics remains an active and important branch of physics. This book provides an accessible and comprehensive account of the subject, emphasising throughout the fundamental physical principles, and stressing the connections with other branches of physics. Beginning with a gentle introduction, the book goes on to cover Bernouilli's theorem, compressible flow, potential flow, surface waves, viscosity, vorticity dynamics, thermal convection and instabilities, turbulence, non-Newtonian fluids and the propagation and attenuation of sound in gases. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable, but it will also be of great interest to anyone who wants to find out more about this fascinating subject.
Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.
This textbook provides an introduction to turbulent motion occurring naturally in the ocean on scales ranging from millimetres to hundreds of kilometres. It describes turbulence in the mixed boundary layers at the sea surface and seabed, turbulent motion in the density-stratified water between, and the energy sources that support and sustain ocean mixing. Little prior knowledge of physical oceanography is assumed. The text is supported by numerous figures, extensive further reading lists, and more than 50 exercises that are graded in difficulty. Detailed solutions to the exercises are available to instructors online at www.cambridge.org/9780521859486. This textbook is intended for undergraduate courses in physical oceanography, and all students interested in multidisciplinary aspects of how the ocean works, from the shoreline to the deep abyssal plains. It also forms a useful lead-in to the author's more advanced graduate textbook, The Turbulent Ocean (Cambridge University Press, 2005).
Understanding the behaviour of particles suspended in a fluid has many important applications across a range of fields, including engineering and geophysics. Comprising two main parts, this book begins with the well-developed theory of particles in viscous fluids, i.e. microhydrodynamics, particularly for single- and pair-body dynamics. Part II considers many-body dynamics, covering shear flows and sedimentation, bulk flow properties and collective phenomena. An interlude between the two parts provides the basic statistical techniques needed to employ the results of the first (microscopic) in the second (macroscopic). The authors introduce theoretical, mathematical concepts through concrete examples, making the material accessible to non-mathematicians. They also include some of the many open questions in the field to encourage further study. Consequently, this is an ideal introduction for students and researchers from other disciplines who are approaching suspension dynamics for the first time.
Turbulence pervades our world, from weather patterns to the air entering our lungs. This book describes methods that reveal its structures and dynamics. Building on the existence of coherent structures – recurrent patterns – in turbulent flows, it describes mathematical methods that reduce the governing (Navier–Stokes) equations to simpler forms that can be understood more easily. This second edition contains a new chapter on the balanced proper orthogonal decomposition: a method derived from control theory that is especially useful for flows equipped with sensors and actuators. It also reviews relevant work carried out since 1995. The book is ideal for engineering, physical science and mathematics researchers working in fluid dynamics and other areas in which coherent patterns emerge.
The partial differential equations that govern scalar and vector fields are the very language used to model a variety of phenomena in solid mechanics, fluid flow, acoustics, heat transfer, electromagnetism and many others. A knowledge of the main equations and of the methods for analyzing them is therefore essential to every working physical scientist and engineer. Andrea Prosperetti draws on many years' research experience to produce a guide to a wide variety of methods, ranging from classical Fourier-type series through to the theory of distributions and basic functional analysis. Theorems are stated precisely and their meaning explained, though proofs are mostly only sketched, with comments and examples being given more prominence. The book structure does not require sequential reading: each chapter is self-contained and users can fashion their own path through the material. Topics are first introduced in the context of applications, and later complemented by a more thorough presentation.
Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.
Perturbation methods are one of the fundamental tools used by all applied mathematicians and theoretical physicists. In this book, the author has managed to present the theory and techniques underlying such methods in a manner which will give the text wide appeal to students from a broad range of disciplines. Asymptotic expansions, strained coordinates and multiple scales are illustrated by copious use of examples drawn from all areas of applied mathematics and theoretical physics. The philosophy adopted is that there is no single or best method for such problems, but that one may exploit the small parameter given some experience and understanding of similar perturbation problems. The author does not look to perturbation methods to give quantitative answers but rather to give a physical understanding of the subtle balances in a complex problem.