To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The simplest approach to energy deposition for flow control assumes a specified amount of energy (or rate of energy) added to the flow governed by the perfect gas Euler or Navier–Stokes equations. Linearized analysis provides insight into the physics of energy deposition in high-speed flows.
The dynamics of a DC discharge are described. Four basic regimes are identified: corona, glow, spark, and arc. Application of Townsend's First and Second Ionization to breakdown is presented. The model of Ward for glow discharge is discussed. Streamer and arc discharge are detailed.
Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This textbook brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Aimed at advanced undergraduate and beginning graduate students in the engineering and physical sciences, the text presents a range of topics and methods from introductory to state of the art.
Written by a leading expert in the field, this book presents a novel method for controlling high-speed flows past aerodynamic shapes using energy deposition via direct current (DC), laser or microwave discharge, and describes selected applications in supersonic and hypersonic flows. Emphasizing a deductive approach, the fundamental physical principles provided give an understanding of the simplified mathematical models derived therefrom. These features, along with an extensive set of 55 simulations, make the book an invaluable reference that will be of interest to researchers and graduate students working in aerospace engineering and in plasma physics.
The thermodynamics of irreversible processes is based on the expression of the entropy source density derived in the previous chapter. From it, phenomenological laws of transport can be presented in a unified way. Heat transport is given by Fourier’s law that leads to a heat equation in which Joule and Thomson effects can be included. It can explain thermal dephasing, heat exchangers and effusivity. Matter transport leads to the Dufour and Soret effects, which imply Fick’s law and the diffusion equation, which can be used to discuss Turing patterns and ultramicroelectrode. Transport of two types of charge carrier leads to the notion of diffusion length, giant magnetoresistance and planar Ettingshausen effect. Transport can be perpendicular to the generalised force, as in the Hall, Righi-Leduc and Nernst effects. The formalism accounts also for thermoelectric effects such as the Seebeck and Peltier effects, with which to analyse thermocouples, a Seebeck loop, adiabatic thermoelectric junctions, the Harman method of determing the ZT coefficient of a thermoelectric material and the principle of a Peltier generator.
The internal energy of the electromagnetic field is distinct from that of the matter exposed to the field. The choice of field variable is determined by physical considerations concerning the electric, displacement, magnetic and induction fields. Legendre transform are worked out in order to define electric and magnetic enthalpies and free enthalpies. Spatial derivatives of the enthalpies yield the force densities that dielectrics and magnets experience in inhomogeneous electric and magnetic induction fields. Either internal energy or electric enthalpy must be used to analyse the force on a dielectric inserted in a capacitor, depending on the constraint (constant charge or constant field). Likewise, internal energy or magnetic enthalpy must be considered to analyse the force on a paramagnetic material inserted in a coil or in between the poles of a magnet. A complete analysis of adiabatic demagnetisation offers an example of application of Mayer’s relation to specific heat at constant induction field or constant magnetisation. The effect is predicted for the case of a paramagnetic material with a magnetisation that obeys Curie’s law.
By applying the first and second laws to systems consisting of two subsystems separated by a wall, it is possible to determine the equilibrium conditions relevant for that wall's properties, e.g. a fixed diatermal wall, a mobile diathermal wall, a fixed permeable wall. The second law imposes a condition on the entropy production rate which implies relations between heat and temperature difference, matter transfer rate and chemical potential difference, volume rate of change and pressure difference. Thus, transport equations are introducted, akin to Fourier law, Fick law and Poiseuille law. These processes are examples of dissipative processes. A worked solution shows that when two subsystems are subjected to a mechanical action, non-symmetric heat flow may occur.