We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Exploring the origins and evolution of magnetic fields in planets, stars and galaxies, this book gives a basic introduction to magnetohydrodynamics and surveys the observational data, with particular focus on geomagnetism and solar magnetism. Pioneering laboratory experiments that seek to replicate particular aspects of fluid dynamo action are also described. The authors provide a complete treatment of laminar dynamo theory, and of the mean-field electrodynamics that incorporates the effects of random waves and turbulence. Both dynamo theory and its counterpart, the theory of magnetic relaxation, are covered. Topological constraints associated with conservation of magnetic helicity are thoroughly explored and major challenges are addressed in areas such as fast-dynamo theory, accretion-disc dynamo theory and the theory of magnetostrophic turbulence. The book is aimed at graduate-level students in mathematics, physics, Earth sciences and astrophysics, and will be a valuable resource for researchers at all levels.