To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book describes in depth the fundamental effects of buoyancy, a key force in driving air and transporting heat and pollutants around the interior of a building. It is essential reading for anyone involved in the design and operation of modern sustainable, energy-efficient buildings, whether a student, researcher or practitioner. The book presents new principles in natural ventilation design and addresses surprising, little-known natural ventilation phenomena that are seldom taught in architecture or engineering schools. Despite its scientific and applied mathematics subject, the book is written in simple language and contains no demanding mathematics, while still covering both qualitative and quantitative aspects of ventilation flow analysis. It is therefore suitable for both non-expert readers who just want to develop intuition of natural ventilation design and control (such as architects and students) and for those possessing more expertise whose work involves quantifying flows (such as engineers and building scientists).
There are two recurring themes in astrophysical and geophysical fluid mechanics: waves and turbulence. This book investigates how turbulence responds to rotation, stratification or magnetic fields, identifying common themes, where they exist, as well as the essential differences which inevitably arise between different classes of flow. The discussion is developed from first principles, making the book suitable for graduate students as well as professional researchers. The author focuses first on the fundamentals and then progresses to such topics as the atmospheric boundary layer, turbulence in the upper atmosphere, turbulence in the core of the earth, zonal winds in the giant planets, turbulence within the interior of the sun, the solar wind, and turbulent flows in accretion discs. The book will appeal to engineers, geophysicists, astrophysicists and applied mathematicians who are interested in naturally occurring turbulent flows.
This chapter is devoted to the properties of granular media immersed in a liquid. Mixtures of grains and fluids are used in many industrial processes, for example in civil engineering projects with concrete. In environmental problems, the coupling between a granular soil and water controls the soil stability and is important in the understanding of many natural disasters such as landslides and mud flows. The physics of two-phase flows involving grains and liquid is a vast area of research. In this book dedicated to granular media, we will restrict ourselves to the high-concentration regime, for which the grains are in contact and interact primarily through contact interactions. Our goal is to illustrate through examples how the concepts developed in the previous chapters on dry granular materials are modified in the presence of an interstitial fluid. In the first part (Section 7.1) we introduce two-phase-flow equations, the relevant theoretical framework for studying immersed granular media. In this approach, the granular medium and the liquid are described as two interpenetrating continuum media, which interact. In the second part, the use of two-phase-flow equations is illustrated in simple examples for which the granular skeleton is static (Section 7.2) and for which it is slightly deformed (Section 7.3). Finally, the influence of the interstitial fluid on the rheology of sheared granular media is discussed in Section 7.4.
A granular medium without external perturbation can be considered primarily as a solid. A pile of sand, the soil on which a house is built and a silo filled with grains are examples of situations in which the grains do not move. The material supports external forces without flowing, just like a solid. This chapter is dedicated to the statics of granular media: how are grains organized in a packing? Howare the forces distributed among the particles to ensure the mechanical balance of the pile? Is it possible to describe the granular medium as a continuum and to define stresses? The chapter starts with the description of the geometrical properties of packings by introducing the concepts of volume fraction and compaction of a granular medium (Section 3.1). Then the problem of the mechanical equilibrium of a sand pile is addressed, and the statistical properties of the inter-particle force distribution are presented (Section 3.2). Following the analysis at the microscopic level, the possibility of a continuum description is discussed in Section 3.3. The concept of stresses in granular media and the relation between inter-particle forces and macroscopic stresses are presented. Simple cases for which the stress distribution can be calculated are studied (Section 3.4). Finally, the issue of elasticity and sound propagation in a granular packing is discussed in Section 3.5.
Granular packings
Packings of grains have been studied since antiquity. Mathematicians, physicists and engineers, in a quest to optimize the storage of granular matter, have been interested in these issues. This section is an introduction to the concepts which are useful for characterizing packings of grains. For more details, the reader is referred to more specialized works, such as the book by Cumberland and Crawford (1987).