Skip to main content Accessibility help
×
×
Home

Liver fat: a relevant target for dietary intervention? Summary of a Unilever workshop

  • Harry P. F. Peters (a1), Patrick Schrauwen (a2), Petra Verhoef (a1), Christopher D. Byrne (a3), David J. Mela (a1), Andreas F. H. Pfeiffer (a4) (a5), Ulf Risérus (a6), Frits R. Rosendaal (a7) and Vera Schrauwen-Hinderling (a2) (a8)...

Abstract

Currently it is estimated that about 1 billion people globally have non-alcoholic fatty liver disease (NAFLD), a condition in which liver fat exceeds 5 % of liver weight in the absence of significant alcohol intake. Due to the central role of the liver in metabolism, the prevalence of NAFLD is increasing in parallel with the prevalence of obesity, insulin resistance and other risk factors of metabolic diseases. However, the contribution of liver fat to the risk of type 2 diabetes mellitus and CVD, relative to other ectopic fat depots and to other risk markers, is unclear. Various studies have suggested that the accumulation of liver fat can be reduced or prevented via dietary changes. However, the amount of liver fat reduction that would be physiologically relevant, and the timeframes and dose–effect relationships for achieving this through different diet-based approaches, are unclear. Also, it is still uncertain whether the changes in liver fat per se or the associated metabolic changes are relevant. Furthermore, the methods available to measure liver fat, or even individual fatty acids, differ in sensitivity and reliability. The present report summarises key messages of presentations from different experts and related discussions from a workshop intended to capture current views and research gaps relating to the points above.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Liver fat: a relevant target for dietary intervention? Summary of a Unilever workshop
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Liver fat: a relevant target for dietary intervention? Summary of a Unilever workshop
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Liver fat: a relevant target for dietary intervention? Summary of a Unilever workshop
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: H. P. F. Peters, fax +31 10 4605993, email harry.peters@unilever.com

References

Hide All
1. Chalasani, N, Younossi, Z, Lavine, JE, et al. (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55, 20052023.
2. Lim, S, Oh, TJ & Koh, KK (2015) Mechanistic link between nonalcoholic fatty liver disease and cardiometabolic disorders. Int J Cardiol 201, 408414.
3. Musso, G, Gambino, R, Cassader, M, et al. (2011) Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med 43, 617649.
4. Targher, G & Byrne, CD (2013) Nonalcoholic fatty liver disease: a novel cardiometabolic risk factor for type 2 diabetes and its complications. J Clin Endocrinol Metab 98, 483495.
5. Targher, G, Day, CP & Bonora, E (2010) Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. New Engl J Med 363, 13411350.
6. Than, NN & Newsome, PN (2015) A concise review of non-alcoholic fatty liver disease. Atherosclerosis 239, 192202.
7. Loomba, R & Sanyal, AJ (2013) The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10, 686690.
8. Jacob, S, Machann, J, Rett, K, et al. (1999) Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48, 11131119.
9. Lindeboom, L, Nabuurs, CI, Hesselink, MKC, et al. (2015) Proton magnetic resonance spectroscopy reveals increased hepatic lipid content after a single high-fat meal with no additional modulation by added protein. Am J Clin Nutr 101, 6571.
10. Stephenson, MC, Leverton, E, Khoo, EYH, et al. (2013) Variability in fasting lipid and glycogen contents in hepatic and skeletal muscle tissue in subjects with and without type 2 diabetes: a 1H and 13C MRS study. NMR Biomed 26, 15181526.
11. Szczepaniak, LS, Nurenberg, P, Leonard, D, et al. (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288, E462E468.
12. Bjermo, H, Iggman, D, Kullberg, J, et al. (2012) Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr 95, 10031012.
13. Bozzetto, L, Prinster, A, Annuzzi, G, et al. (2012) Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care 35, 14291435.
14. Haufe, S, Engeli, S, Kast, P, et al. (2011) Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology 53, 15041514.
15. Rosqvist, F, Iggman, D, Kullberg, J, et al. (2014) Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 63, 23562368.
16. Zelber-Sagi, S, Ratziu, V & Oren, R (2011) Nutrition and physical activity in NAFLD: an overview of the epidemiological evidence. World J Gastroenterol 17, 33773389.
17. Szczepaniak, LS, Dobbins, RL, Metzger, GJ, et al. (2003) Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 49, 417423.
18. Thamer, C, Machann, J, Haap, M, et al. (2004) Intrahepatic lipids are predicted by visceral adipose tissue mass in healthy subjects. Diabetes Care 27, 27262729.
19. Hoeks, J, Hesselink, MKC, Russell, AP, et al. (2006) Peroxisome proliferator-activated receptor-γ coactivator-1 and insulin resistance: acute effect of fatty acids. Diabetologia 49, 24192426.
20. Bilet, L, Van De Weijer, T, Hesselink, MKC, et al. (2011) Exercise-induced modulation of cardiac lipid content in healthy lean young men. Basic Res Cardiol 106, 307315.
21. Bilet, L, Brouwers, B, Van Ewijk, PA, et al. (2015) Acute exercise does not decrease liver fat in men with overweight or NAFLD. Sci Rep 5, 9709.
22. Schrauwen-Hinderling, VB, Hesselink, MKC, Meex, R, et al. (2010) Improved ejection fraction after exercise training in obesity is accompanied by reduced cardiac lipid content. J Clin Endocrinol Metab 95, 19321938.
23. Keating, SE, Hackett, DA, Parker, HM, et al. (2015) Effect of aerobic exercise training dose on liver fat and visceral adiposity. J Hepatol 63, 174182.
24. Thoma, C, Day, CP & Trenell, MI (2012) Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol 56, 255266.
25. Timmers, S, Konings, E, Bilet, L, et al. (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14, 612622.
26. Schrauwen-Hinderling, VB, Schrauwen, P, Hesselink, MKC, et al. (2003) The increase in intramyocellular lipid content is a very early response to training. J Clin Endocrinol Metab 88, 16101616.
27. Goodpaster, BH, He, J, Watkins, S, et al. (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metabol 86, 57555761.
28. Trevino, MB, Mazur-Hart, D, Machida, Y, et al. (2015) Liver perilipin 5 expression worsens hepatosteatosis but not insulin resistance in high fat-fed mice. Mol Endocrinol 29, 14141425.
29. Krahmer, N, Guo, Y, Farese, J, et al. (2009) SnapShot: lipid droplets. Cell 139, 1024.
30. Ekstedt, M, Franzén, LE, Mathiesen, UL, et al. (2006) Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44, 865873.
31. Vernon, G, Baranova, A & Younossi, ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Alim Pharmacol Ther 34, 274285.
32. Beymer, C, Kowdley, KV, Larson, A, et al. (2003) Prevalence and predictors of asymptomatic liver disease in patients undergoing gastric bypass surgery. Arch Surg 138, 12401244.
33. Colicchio, P, Tarantino, G, Del, GF, et al. (2005) Non-alcoholic fatty liver disease in young adult severely obese non-diabetic patients in South Italy. Ann Nutr Metab 49, 289295.
34. Kagansky, N, Levy, S, Keter, D, et al. (2004) Non-alcoholic fatty liver disease – a common and benign finding in octogenarian patients. Liver Int 24, 588594.
35. Leite, NC, Salles, GF, Araujo, ALE, et al. (2009) Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int 29, 113119.
36. Machado, M, Marques-Vidal, P & Cortez-Pinto, H (2006) Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol 45, 600606.
37. Wagenknecht, LE, Scherzinger, AL, Stamm, ER, et al. (2009) Correlates and heritability of nonalcoholic fatty liver disease in a minority cohort. Obesity 17, 12401246.
38. Schwimmer, JB, Deutsch, R, Kahen, T, et al. (2006) Prevalence of fatty liver in children and adolescents. Pediatrics 118, 13881393.
39. Adams, LA, Lymp, JF, St Sauver, J, et al. (2005) The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129, 113121.
40. Völzke, H, Robinson, DM, Kleine, V, et al. (2005) Hepatic steatosis is associated with an increased risk of carotid atherosclerosis. World J Gastroenterol 11, 18481853.
41. Sattar, N (2014) Non-alcoholic fatty liver disease. BMJ 349, g4596.
42. Imamura, Y, Uto, H, Hiramine, Y, et al. (2014) Increasing prevalence of diabetes mellitus in association with fatty liver in a Japanese population. J Gastroenterol 49, 14061413.
43. Shibata, M, Kihara, Y, Taguchi, M, et al. (2007) Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 30, 29402944.
44. Zhang, Y, Zhang, T, Zhang, C, et al. (2015) Identification of reciprocal causality between non-alcoholic fatty liver disease and metabolic syndrome by a simplified Bayesian network in a Chinese population. BMJ 5, e008204.
45. De Mutsert, R, Den Heijer, M, Rabelink, TJ, et al. (2013) The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection. Eur J Epidemiol 28, 513523.
46. Sumida, Y, Nakajima, A & Itoh, Y (2014) Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 20, 475485.
47. Guiu, B, Crevisy-Girod, E, Binquet, C, et al. (2012) Prediction for steatosis in type-2 diabetes: clinico-biological markers versus 1H-MR spectroscopy. Eur Radiol 22, 855863.
48. Wieckowska, A & Feldstein, AE (2008) Diagnosis of nonalcoholic fatty liver disease: invasive versus noninvasive. Semin Liver Dis 28, 386395.
49. Machado, MV & Cortez-Pinto, H (2013) Non-invasive diagnosis of non-alcoholic fatty liver disease. A critical appraisal. J Hepatol 58, 10071019.
50. Kim, H, Taksali, SE, Dufour, S, et al. (2008) Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point Dixon and three-point IDEAL. Magn Reson Med 59, 521527.
51. Sijens, PE, Edens, MA, Bakker, SJL, et al. (2010) MRI-determined fat content of human liver, pancreas and kidney. World J Gastroenterol 16, 19931998.
52. Haus, JM, Solomon, TPJ, Kelly, KR, et al. (2013) Improved hepatic lipid composition following short-term exercise in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 98, E1181E1188.
53. Lindeboom, L, de Graaf, RA, Nabuurs, CI, et al. (2016) Quantum coherence spectroscopy to measure dietary fat retention in the liver. JCI Insight 1, e84671.
54. Iozzo, P, Lautamaki, R, Geisler, F, et al. (2004) Non-esterified fatty acids impair insulin-mediated glucose uptake and disposition in the liver. Diabetologia 47, 11491156.
55. Labbe, SM, Grenier-Larouche, T, Noll, C, et al. (2012) Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans. Diabetes 61, 27012710.
56. Gastaldelli, A, Cusi, K, Pettiti, M, et al. (2007) Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 133, 496506.
57. Korenblat, KM, Fabbrini, E, Mohammed, BS, et al. (2008) Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134, 13691375.
58. Kotronen, A, Juurinen, L, Tiikkainen, M, et al. (2008) Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 135, 122130.
59. Kotronen, A, Vehkavaara, S, Seppälä-Lindroos, A, et al. (2007) Effect of liver fat on insulin clearance. Am J Physiol Endocrinol Metab 293, E1709E1715.
60. Heianza, Y, Arase, Y, Tsuji, H, et al. (2014) Metabolically healthy obesity, presence or absence of fatty liver, and risk of type 2 diabetes in Japanese individuals: Toranomon Hospital Health Management Center Study 20 (TOPICS 20). J Clin Endocrinol Metab 99, 29522960.
61. Lorenzo, C, Wagenknecht, LE, Rewers, MJ, et al. (2010) Disposition index, glucose effectiveness, and conversion to type 2 diabetes: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care 33, 20982103.
62. Iozzo, P, Bucci, M, Roivainen, A, et al. (2010) Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139, 846856.
63. Jin, ES, Szuszkiewicz-Garcia, M, Browning, JD, et al. (2015) Influence of liver triglycerides on suppression of glucose production by insulin in men. J Clin Endocrinol Metab 100, 235243.
64. Amaro, A, Fabbrini, E, Kars, M, et al. (2010) Dissociation between intrahepatic triglyceride content and insulin resistance in familial hypobetalipoproteinemia. Gastroenterology 139, 149153.
65. Cuthbertson, DJ, Shojaee-Moradie, F, Sprung, VS, et al. (2016) Dissociation between exercise-induced reduction in liver fat and changes in hepatic and peripheral glucose homoeostasis in obese patients with non-alcoholic fatty liver disease. Clin Sci 130, 93104.
66. Sanyal, AJ, Campbell-Sargent, C, Mirshahi, F, et al. (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120, 11831192.
67. Gentile, CL, Frye, MA & Pagliassotti, MJ (2011) Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease. BioFactors 37, 816.
68. Xu, X, So, JS, Park, JG, et al. (2013) Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 33, 301311.
69. Valtuena, S, Pellegrini, N, Ardigó, D, et al. (2006) Dietary glycemic index and liver steatosis. Am J Clin Nutr 84, 136142.
70. Keyhani-Nejad, F, Irmler, M, Isken, F, et al. (2014) Nutritional strategy to prevent fatty liver and insulin resistance independent of obesity by reducing glucose-dependent insulinotropic polypeptide responses in mice. Diabetologia 58, 374383.
71. Tang, A, Rabasa-Lhoret, R, Castel, H, et al. (2015) Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: a randomized trial. Diabetes Care 38, 13391346.
72. Rudovich, NN, Weickert, MO, Machann, J, et al. (2010) Combination of acarbose and ezetimibe prevents non-alcoholic fatty liver disease: a break of intestinal insulin resistance? J Hepatol 52, 952953.
73. Isken, F, Klaus, S, Petzke, KJ, et al. (2010) Impairment of fat oxidation under high- vs. low-glycemic index diet occurs before the development of an obese phenotype. Am J Physiol Endocrinol Metab 298, E287E295.
74. Browning, JD, Baker, JA, Rogers, T, et al. (2011) Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr 93, 10481052.
75. Kruse, M, von Loeffelholz, C, Hoffmann, D, et al. (2015) Dietary rapeseed/canola-oil supplementation reduces serum lipids and liver enzymes and alters postprandial inflammatory responses in adipose tissue compared to olive-oil supplementation in obese men. Mol Nutr Food Res 59, 507519.
76. Nowotny, B, Zahiragic, L, Bierwagen, A, et al. (2014) Low-energy diets differing in fibre, red meat and coffee intake equally improve insulin sensitivity in type 2 diabetes: a randomised feasibility trial. Diabetologia 58, 255264.
77. Byrne, CD & Targher, G (2015) NAFLD: a multisystem disease. J Hepatol 62, S47S64.
78. Sung, K-C, Jeong, W-S, Wild, SH, et al. (2012) Combined influence of insulin resistance, overweight/obesity, and fatty liver as risk factors for type 2 diabetes. Diabetes Care 35, 717722.
79. Sung, K-C, Wild, SH & Byrne, CD (2013) Resolution of fatty liver and risk of incident diabetes. J Clin Endocrinol Metab 98, 36373643.
80. Oni, ET, Agatston, AS, Blaha, MJ, et al. (2013) A systematic review: burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver; should we care? Atherosclerosis 230, 258267.
81. Stepanova, M & Younossi, ZM (2012) Independent association between nonalcoholic fatty liver disease and cardiovascular disease in the US population. Clin Gastroenterol Hepatol 10, 646650.
82. Targher, G, Bertolini, L, Padovani, R, et al. (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30, 12121218.
83. Bhatia, LS, Curzen, NP, Calder, PC, et al. (2012) Non-alcoholic fatty liver disease: a new and important cardiovascular risk factor? Eur Heart J 33, 11901200.
84. Mantovani, A, Pernigo, M, Bergamini, C, et al. (2015) Heart valve calcification in patients with type 2 diabetes and nonalcoholic fatty liver disease. Metabolism 64, 879887.
85. Targher, G, Valbusa, F, Bonapace, S, et al. (2013) Non-alcoholic fatty liver disease is associated with an increased incidence of atrial fibrillation in patients with type 2 diabetes. PLOS ONE 8, e57183.
86. Sung, K-C, Wild, SH & Byrne, CD (2014) Development of new fatty liver, or resolution of existing fatty liver, over five years of follow-up, and risk of incident hypertension. J Hepatol 60, 10401045.
87. Nobili, V, Alisi, A, Musso, G, et al. (2016) Omega-3 fatty acids: mechanisms of benefit and therapeutic effects in pediatric and adult NAFLD. Crit Rev Clin Lab Sci 53, 106120.
88. Sanyal, AJ, Abdelmalek, MF, Suzuki, A, et al. (2014) No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology 147, 377384.
89. Scorletti, E, Bhatia, L, McCormick, KG, et al. (2014) Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the WELCOME study. Hepatology 60, 12111221.
90. Dongiovanni, P & Valenti, L (2016) Genetics of nonalcoholic fatty liver disease. Metabolism 65, 10261037.
91. Nobili, V, Bedogni, G, Donati, B, et al. (2013) The I148M variant of PNPLA3 reduces the response to docosahexaenoic acid in children with non-alcoholic fatty liver disease. J Med Food 16, 957960.
92. Scorletti, E, West, AL, Bhatia, L, et al. (2015) Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and TM6SF2 genotypes: results from the WELCOME trial. J Hepatol 63, 14761483.
93. Banerjee, R, Pavlides, M, Tunnicliffe, EM, et al. (2014) Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 60, 6977.
94. Pavlides, M, Banerjee, R, Sellwood, J, et al. (2016) Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J Hepatol 64, 308315.
95. Byrne, CD & Targher, G (2016) Time to replace assessment of liver histology with MR-based imaging tests to assess efficacy of interventions for nonalcoholic fatty liver disease. Gastroenterology 150, 710.
96. Sato, F, Tamura, Y, Watada, H, et al. (2007) Brief report: effects of diet-induced moderate weight reduction on intrahepatic and intramyocellular triglycerides and glucose metabolism in obese subjects. J Clin Endocrinol Metab 92, 33263329.
97. Viljanen, APM, Iozzo, P, Borra, R, et al. (2009) Effect of weight loss on liver free fatty acid uptake and hepatic insulin resistance. J Clin Endocrinol Metab 94, 5055.
98. Bortolotti, M, Kreis, R, Debard, C, et al. (2009) High protein intake reduces intrahepatocellular lipid deposition in humans. Am J Clin Nutr 90, 10021010.
99. Van Der Meer, RW, Hammer, S, Lamb, HJ, et al. (2008) Effects of short-term high-fat, high-energy diet on hepatic and myocardial triglyceride content in healthy men. J Clin Endocrinol Metab 93, 27022708.
100. Kirk, E, Reeds, DN, Finck, BN, et al. (2009) Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology 136, 15521560.
101. Ryan, MC, Abbasi, F, Lamendola, C, et al. (2007) Serum alanine aminotransferase levels decrease further with carbohydrate than fat restriction in insulin-resistant adults. Diabetes Care 30, 10751080.
102. Westerbacka, J, Lammi, K, Haekkinen, A-M, et al. (2005) Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin Endocrinol Metab 90, 28042809.
103. Allard, JP, Aghdassi, E, Mohammed, S, et al. (2008) Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): a cross-sectional study. J Hepatol 48, 300307.
104. Musso, G, Gambino, R, De Michieli, F, et al. (2003) Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 37, 909916.
105. Petersson, H, Arnlöv, J, Zethelius, B, et al. (2010) Serum fatty acid composition and insulin resistance are independently associated with liver fat markers in elderly men. Diabetes Res Clin Pract 87, 379384.
106. Petit, JM, Guiu, B, Duvillard, L, et al. (2012) Increased erythrocytes n-3 and n-6 polyunsaturated fatty acids is significantly associated with a lower prevalence of steatosis in patients with type 2 diabetes. Clin Nutr 31, 520525.
107. Risérus, U, Willett, WC & Hu, FB (2009) Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 48, 4451.
108. De Wit, NJW, Afman, LA, Mensink, M, et al. (2012) Phenotyping the effect of diet on non-alcoholic fatty liver disease. J Hepatol 57, 13701373.
109. DeLany, JP, Windhauser, MM, Champagne, CM, et al. (2000) Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 72, 905911.
110. Parker, HM, Johnson, NA, Burdon, CA, et al. (2012) Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol 56, 944951.
111. Argo, CK, Patrie, JT, Lackner, C, et al. (2015) Effects of n-3 fish oil on metabolic and histological parameters in NASH: a double-blind, randomized, placebo-controlled trial. J Hepatol 62, 190197.
112. Delarue, J & Lallès, J-P (2016) Nonalcoholic fatty liver disease: roles of the gut and the liver and metabolic modulation by some dietary factors and especially long-chain n-3 PUFA. Mol Nutr Food Res 60, 147159.
113. Sevastianova, K, Santos, A, Kotronen, A, et al. (2012) Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans. Am J Clin Nutr 96, 727734.
114. Lecoultre, V, Egli, L, Carrel, G, et al. (2013) Effects of fructose and glucose overfeeding on hepatic insulin sensitivity and intrahepatic lipids in healthy humans. Obesity 21, 782785.
115. Maersk, M, Belza, A, Stoedkilde-Joergensen, H, et al. (2012) Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr 95, 283289.
116. Pastori, D, Baratta, F, Carnevale, R, et al. (2015) Similar reduction of cholesterol-adjusted vitamin E serum levels in simple steatosis and non-alcoholic steatohepatitis. Clin Trans Gastroenterol 6, e113.
117. Watanabe, S, Hashimoto, E, Ikejima, K, et al. (2015) Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. J Gastroenterol 50, 364377.
118. Kwok, RM, Torres, DM & Harrison, SA (2013) Vitamin D and nonalcoholic fatty liver disease (NAFLD): is it more than just an association? Hepatology 58, 11661174.
119. Chachay, VS, Macdonald, GA, Martin, JH, et al. (2014) Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 12, 20922103.
120. Yki-Järvinen, H (2010) Nutritional modulation of nonalcoholic fatty liver disease and insulin resistance: human data. Curr Opin Clin Nutr Metab Care 13, 709714.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Nutritional Science
  • ISSN: 2048-6790
  • EISSN: 2048-6790
  • URL: /core/journals/journal-of-nutritional-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed