Skip to main content
    • Aa
    • Aa

Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic

  • Elise Nardin (a1), Bertrand Lefebvre (a2), Oldřich Fatka (a3), Martina Nohejlová (a3), Libor Kašička (a4), Miroslav Šinágl (a5) and Michal Szabad (a6)...

The primitive blastozoan Felbabkacystis luckae n. gen. n. sp. is described from the Drumian Jince Formation, Barrandian area (Czech Republic) from eleven fairly well-preserved specimens. Its unique body plan organization is composed of a relatively long, stalk-like imbricate structure directly connected to the aboral imbricate cup of the test and of an adoral vaulted tessellate test supporting the ambulacral and brachiolar systems. Its bipartite test, called prototheca, highlights the evolution of the body wall among blastozoans. Felbabkacystis n. gen. shows the combination of plesiomorphic (imbricate stalk-like appendage) and derived features (highly domed peristome, elongate epispires). The new genus is interpreted as a transitional form between calyx-bearing and theca-bearing blastozoans, and is attributed to the new family Felbabkacystidae. The lithology, the associated fauna, and the possession of a long stalk suggest that Felbabkacystis was probably a low-level suspension feeder living in relatively deep settings.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic
      Available formats
Hide All
ÁlvaroJ.J., BauluzB., SubiasI., PierreC., and VizcaïnoD., 2008, Carbon chemostratigraphy of the Cambrian-Ordovician transition in a midlatitude mixed platform, Montagne Noire, France: Geological Society of America Bulletin, v. 120, p. 962975.
ÁlvaroJ.J., ZamoraS., ClausenS., VizcaïnoD., and SmithA.B., 2013, The role of abiotic factors in the Cambrian Substrate Revolution: A review from the benthic community replacements of West Gondwana: Earth-Science Reviews, v. 118, p. 6982.
AusichW.I., 2001, Echinoderm taphonomy, in Jangoux, M., and Lawrence, J.M., eds., Echinoderm Studies, v. 6. Lisse, A.A. Balkema, p. 171227.
BabcockL.E., ReesM.N., RobisonR.A., LangenburgE.S., and PengS., 2004, Potential Global Standard Stratotype-section and Point (GSSP) for a Cambrian stage boundary defined by the first appearance of the trilobite Ptychagnostus atavus, Drum Mountains, Utah, USA: Geobios, v. 37, p. 149158.
BarrandeJ., 1846, Notice préliminaire sur le Système silurien et les trilobites de Bohème: Leipzig, Hirschfeld, 97 p.
BarrandeJ., 1887, Systême Silurien du centre de la Bohême. Part I: Recherches paléontologiques, v. 7, Classes des Echinodermes, sec. 1, Ordre des Cystidées: Leipzig, Rivnac, Prague/Gerhard, 396 p.
BottjerD.J., and AusichW.I., 1986, Phanerozoic development of tiering in soft substrate suspension-feeding communities: Paleobiology, v. 12, p. 400420.
BottjerD.J., HagadornJ.W., and DornbosS.Q., 2000, The Cambrian substrate revolution: GSA Today, v. 10, p. 17.
BransonE.B., and PeckR.E., 1940, A new cystoid from the Ordovician of Oklahoma: Journal of Paleontology, v. 14, p. 8992.
BrettC.E., MoffatH.A., and TaylorW., 1997, Echinoderm taphonomy, taphofacies, and Lagerstätten, in Waters, J.A., and Maples, C.G., eds., Geobiology of Echinoderms: Paleontological Society Papers, v. 3, p. 147190.
BroadheadT.W., 1982, Reappraisal of class Eocrinoidea (Echinodermata), in Laurence, J.M., ed., Echinoderms: Proceedings of the 4th International Echinoderm Conference; Rotterdam, A.A. Balkema, p. 125131.
CallawayC., 1877, On a new area of Upper Cambrian rocks in South Shropshire, with a description of new fauna: Quarterly Journal of the Geological Society of London, v. 33, p. 652672.
ChauvelJ., 1941, Recherches sur les Cystoïdes et les Carpoïdes armoricains: Mémoires de la Société Géologique et Minéralogique de Bretagne, v. 5, p. 1286.
DavidB., LefebvreB., MooiR., and ParsleyR.L., 2000, Are Homalozoans echinoderms? An answer from the extraxial-axial theory: Paleobiology, v. 26, p. 529555.
DornbosS.Q., 2006, Evolutionary palaeoecology of early epifaunal echinoderms: Response to increasing bioturbation levels during the Cambrian radiation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 237, p. 225239.
DurhamJ.W., 1968, Lepidocystoids, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part S, Echinodermata 1(2): New York and Lawrence: Geological Society of America and the University of Kansas, p. S631S634.
EichwaldC.L. von, 1840, Über das silurische Schichtensystem in Esthland: St. Petersburg: Medizinische Akademie, 222 p.
FatkaO., 2006, Biostratigraphy of the Jince Formation (middle Cambrian) in the Příbram-Jince Basin: Historical review: Acta Universitatis Carolinae - Geologica, v. 47, p. 5361.
FatkaO., and KorduleV., 1985, Etoctenocystis bohemica gen. et sp. nov., new Ctenocystoid from Czechoslovakia (Echinodermata, middle Cambrian): Věstník Ústředního ústav geologického, v. 60, p. 225231.
FatkaO., and KorduleV., 1990, Vyscystis ubaghsi gen. et sp. nov., imbricate eocrinoid from Czechoslovakia (Echinodermata, middle Cambrian): Věstník Ústředního ústav geologického, v. 65, p. 315323.
FatkaO., and KorduleV., 1991, Akadocrinus knizki sp. nov., gogiid eocrinoids from Czechoslovakia (Echinodermata, middle Cambrien): Věstník Ústředního ústav geologického, v. 66, no. 4, p. 239246.
FatkaO., and KorduleV., 2001, Asturicystis havliceki sp. nov. (Echinodermata, Homostelea) form the middle Cambrian of Bohemia (Barrandian area, Czech Republic): Journal of Czech Geological Survey, v. 46, p. 189194.
FatkaO., and MerglM., 2009, The “microcontinent” Perunica: Status and story 15 years after conception: Geological Society, London, Special Publications, v. 325, p. 65101.
FatkaO., and SzabadM., 2014, Cambrian biostratigraphy in the Příbram-Jince Basin (Barrandian area, Czech Republic): Bulletin of Geosciences, v. 89, p. 413429.
FatkaO., KorduleV., and SzabadM., 2004, Stratigraphical distribution of Cambrian fossils in the Příbram-Jince Basin (Barrandian area, Czech Republic): Senckenbergiana lethaea, v. 84, p. 369384.
FatkaO., WilliamsM., and BudilP., 2014, Bradoriid arthropods from the Cambrian of the Příbram-Jince Basin, Czech Republic: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 273, no. 2, p. 147154.
FatkaO., KnížekF., and KozákV., 2015, Condylopyge Hawle et Corda, 1847 in the Příbram-Jince Basin (Barrandian area, the Czech Republic, Agnostida): Acta Musei Nationalis Pragae, Series B, Historia Naturalis/Sborník Národního muzea řada B, přírodní vědy, v. 71, no. 1–2, p. 103109.
FoersteA.F., 1938, Echinodermata, in Resser, C.E., and Howell, B.F., eds., Lower Cambrian Olenellus Zone of the Appalachians: Geological Society of American Bulletin, v. 49, p. 212213.
GeyerG., and LandingE., 2004, A unified lower-middle Cambrian chronostratigraphy for West Gondwana: Acta Geologica Polonica, v. 54, p. 179218.
Gil CidM.D., and Domínguez-AlonsoP.D., 2002, Ubaghsicystis segurae nov. gen. y sp., nuevo Eocrinoide (Echinodermata) del Cambrio Medio del Norte de España: Coloquios de Paleontología, v. 53, p. 2132.
GorzelakP., and SalamonM.A., 2013, Experimental tumbling of echinoderms—Taphonomic patterns and implications: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 386, p. 569574.
GuensburgT.E., and SprinkleJ., 1992, Rise of echinoderms in the Paleozoic evolutionary fauna: Significance of paleoenvironmental controls: Geology, v. 20, p. 407410.
HeckerR.F., 1938, New data on Rhipidocystis Jkl. (order Digitata n. o., class Carpoidea Jkl) and a new genus Bockia (subclass Eocrinoidea Jkl, class Crinoidea Mill.) from the Ordovician of Leningrad Province, USSR, and Estonia: Académie des Sciences URSS, Compte-Rendus, v. 19, p. 421424.
JablonskiD., SepkoskiJ.J., BottjerD.J., and SheehanP.M., 1983, Onshore-offshore patterns in the evolution of Phanerozoic shelf communities: Science, v. 222, p. 11231125.
JaekelO., 1901, Über Carpoiden, eine neue Classe von Pelmatozoen: Zeitschrift der Deutschen geologischen Gesellschaft, v. 52, p. 661677.
JellP.A., BurettC.F., and BanksM.R., 1985, Cambrian and Ordovician echinoderms from eastern Australia: Alcheringa, v. 9, p. 183208.
KlossT.J., DornbosS.Q., and ChenJ., 2015, Substrate adaptations of sessile benthic metazoans during the Cambrian radiation: Paleobiology, v. 41, p. 342352.
LandingE., GeyerG., and HeldmaierW., 2006, Distinguishing eustatic and epeirogenic controls on lower-middle Cambrian boundary successions in West Gondwana (Morocco and Iberia): Sedimentology, v. 53, p. 899918.
LefebvreB., and FatkaO., 2003, Palaeogeographical and palaeoecological aspects of the Cambro-Ordovician radiation of echinoderms in Gondwanan Africa and peri-Gondwanan Europe: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 195, p. 7397.
LefebvreB., NardinE., and FatkaO., 2015, Body wall homologies in basal blastozoans, in Zamora, S., and Rábano, I., eds., Progress in Echinoderm Palaeobiology, Cuadernos Del Museo Geominero, v. 19: Madrid, Insituto Geologico y Minero de España, p. 8793.
LiñánE., and MerglM., 2001, Lower and middle Cambrian brachiopods from the Iberian Chains and Sierra Morena (Spain): Revista Española de Paleontologia, v. 16, p. 317337.
MooiR., and DavidB., 1998, Evolution within a bizarre phylum: Homologies of the first echinoderms: American Zoologist, v. 38, p. 965974.
NardinE., LefebvreB., DavidB., and MooiR., 2009, Early Paleozoic diversification of echinoderms: The example of blastozoans: Comptes Rendus Palevol, v. 8, p. 179188.
NardinE., DavidB., LefebvreB., and MooiR., 2010, Reappraisal of ambulacral branching patterns in blastozoans, in Harris, L.G., Böttger, S.A., Walker, C.W., and Lesser, M.P., eds., Echinoderms: Durham: New York, A.A. Balkema, p. 4549.
NohejlováM., and FatkaO., 2015, Blastozoan echinoderms from the Cambrian of the Barrandian Area (Czech Republic), in Zamora, S., and Rabáno, I., eds., Progress in Echinoderm Palaeobiology, Cuadernos Del Museo Geominero, v. 19: Madrid, Insituto Geologico y Minero de Espana, p. 119124.
ParsleyR.L., and ProkopR.J., 2004, Functional morphology and palaeoecology of some sessile middle Cambrian echinoderms from the Barrandian region of Bohemia: Bulletin of Geosciences, v. 79, p. 147156.
ParsleyR.L., and ZhaoY.L., 2006, Long stalked eocrinoids in the basal middle Cambrian Kaili Biota, Taijiang County, Guizhou Province, China: Journal of Paleontology, v. 80, p. 10581071.
ParsleyR.L., and ZhaoY.L., 2010, A new turban-shaped gogiid eocrinoid from the Kaili Formation (Kaili Biota), Balang, Jianhe County, Guizhou Province, China: Journal of Paleontology, v. 84, p. 549553.
PaulC.R.C., 1976, Palaeogeography of primitive echinoderms in the Ordovician, in Bassett, M.G., ed., The Ordovician System: Proceedings of a Palaeontological Association Symposium. Cardiff, The University of Wales Press and National Museum of Wales, p. 553574.
PaulC.R.C., and SmithA.B., 1984, The early radiation and phylogeny of echinoderms: Biological Reviews, v. 59, p. 443481.
PompeckjJ.F. von, 1896, Die Fauna des Kambriums von Tejřovic und Skrej in Böhmen: Jahrbuch der geologischen Reichensalt, v. 45, p. 495511.
PowellW.G., 2009, Comparison of geochemical and distinctive mineralogical features associated with the Kinzers and Burgess Shale formations and their associated units: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 277, p. 127140.
ProkopR.J., 1962, Akadocrinus nov. gen., a new Crinoid from the Cambrian of the Jince Area (Eocrinoidea): Sborník Státního geologického Ústavu Československé Republiky, oddíl paleontologický, v. 27, p. 3742.
ProkopR.J., 1964, Sphaeronitoidea Neumayr of the lower Paleozoic of Bohemia (Cystoidea, Diploporita): Sborníku geologických věd – Paleontologie, v. 3, p. 737.
RuedemannR., 1933, Camptostroma, a lower Cambrian floating hydrozoan: Proceedings of the United States National Museum, v. 82, p. 113.
SepkoskiJ.J., 1991, A model of onshore-offshore change in faunal diversity: Paleobiology, v. 17, p. 5877.
SkinnerE.S., 2005, Taphonomy and depositional circumstances of exceptionally preserved fossils from the Kinzers Formation (Cambrian), southeastern Pennsylvania: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 220, p. 167192.
SmithA.B., 1984, Classification of the Echinodermata: Palaeontology, v. 27, p. 431459.
SmithA.B., and ZamoraS., 2013, Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan: Proceedings of the Royal Society of London, Biological Sciences, v. 280, p. 2013119720131197.
SmithA.B., ZamoraS., and ÁlvaroJ.J., 2013, The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid: Nature Communications, v. 4, no. 1385, doi: 10.1038/ncomms2391.
SprinkleJ., 1973, Morphology and evolution of blastozoan echinoderms: Museum of Comparative Zoology, Harvard University, Special Publication, 283 p.
SprinkleJ., 1981, Diversity and evolutionary patterns of Cambrian echinoderms, in Taylor, J.F., ed., Second International Symposium on the Cambrian System, p. 219221.
SprinkleJ., and CollinsD., 2006, New Eocrinoids from the Burgess Shale, Southern British Columbia, Canada, and the Spence Shale, Northern Utah, USA: Canadian Journal of Earth Sciences, v. 43, no. 3, p. 303322.
SprinkleJ., and GuensburgT.E., 1995, Origin of echinoderms in the Paleozoic evolutionary fauna: The role of substrates: Palaios, v. 10, p. 437453.
SwoffordD.L., 2016, PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0a150: Sunderland, MA, Sinauer Associates.
UbaghsG., 1968, Eocrinoidea, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Echinodermata 1(2): New York and Lawrence, Geological Society of America and the University of Kansas, p. S455–S495.
UbaghsG., 1975, Early Paleozoic echinoderms: Annual Review of Earth and Planetary Sciences, v. 3, p. 7998.
UlrichE.O., 1929, Trachelocrinus a new genus of upper Cambrian crinoids: Journal of Washington Academy of Science, v. 19, p. 6366.
WalcottC.D., 1917, Cambrian geology and paleontology. IV, Fauna of the Mount Whyte Formation: Smithsonian Miscellaneous Collections, v. 67, p. 61114.
ZamoraS., 2010, Middle Cambrian echinoderms from north Spain show echinoderms diversified earlier in Gondwana: Geology, v. 38, p. 507510.
ZamoraS., and RahmanI.A., 2014, Deciphering the early evolution of echinoderms with Cambrian fossils: Palaeontology, v. 57, p. 11051119.
ZamoraS., and SmithA.B., 2012, Cambrian stalked echinoderms show unexpected plasticity of arm construction: Proceedings of the Royal Society B: Biological Sciences, v. 279, p. 293298.
ZamoraS., ÁlvaroJ.J., and VizcaïnoD., 2009, Pelmatozoan echinoderms from the Cambrian-Ordovician transition of the Iberian Chains (NE Spain): Early diversification of anchoring strategies: Swiss Journal of Geosciences, v. 102, p. 4345.
ZamoraS., RahmanI.A., and SmithA.B., 2012, Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution: PLoS ONE, v. 7, no. e38296, doi: 10.1098/rspb.2011.0777.
ZamoraS., LefebvreB., Javier AlvaroJ., ClausenS., ElickiO., FatkaO., JellP., KouchinskyA., LinJ.-P., NardinE., ParsleyR., RozhnovS., SprinkleJ., SumrallC.D., VizcainoD., and SmithA.B., 2013, Chapter 13 Cambrian echinoderm diversity and palaeobiogeography: Geological Society, London, Memoirs, v. 38, p. 157171.
ZhaoY.-L., HuangY.-Z., and GongX.-Y., 1994, Echinoderm fossils of Kaili Fauna from Taijiang, Guizhou: Acta Palaeontologica Sinica, v. 33, p. 305331. (in Chinese with English summary).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Paleontology
  • ISSN: 0022-3360
  • EISSN: 1937-2337
  • URL: /core/journals/journal-of-paleontology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 45
Total number of PDF views: 112 *
Loading metrics...

Abstract views

Total abstract views: 443 *
Loading metrics...

* Views captured on Cambridge Core between 23rd March 2017 - 23rd October 2017. This data will be updated every 24 hours.