Skip to main content
×
×
Home

Diagnosing collisionless energy transfer using field–particle correlations: gyrokinetic turbulence

  • Kristopher G. Klein (a1), Gregory G. Howes (a2) and Jason M. TenBarge (a3)
Abstract

Determining the physical mechanisms that extract energy from turbulent fluctuations in weakly collisional magnetized plasmas is necessary for a more complete characterization of the behaviour of a variety of space and astrophysical plasmas. Such a determination is complicated by the complex nature of the turbulence as well as observational constraints, chiefly that in situ measurements of such plasmas are typically only available at a single point in space. Recent work has shown that correlations between electric fields and particle velocity distributions constructed from single-point measurements produce a velocity-dependent signature of the collisionless damping mechanism. We extend this work by constructing field–particle correlations using data sets drawn from single points in strongly driven, turbulent, electromagnetic gyrokinetic simulations to demonstrate that this technique can identify the collisionless mechanisms operating in such systems. The velocity-space structure of the correlation between proton distributions and parallel electric fields agrees with expectations of resonant mechanisms transferring energy collisionlessly in turbulent systems. This work motivates the eventual application of field–particle correlations to spacecraft measurements in the solar wind, with the ultimate goal to determine the physical mechanisms that dissipate magnetized plasma turbulence.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diagnosing collisionless energy transfer using field–particle correlations: gyrokinetic turbulence
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Diagnosing collisionless energy transfer using field–particle correlations: gyrokinetic turbulence
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Diagnosing collisionless energy transfer using field–particle correlations: gyrokinetic turbulence
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: kriskl@umich.edu
References
Hide All
Abel I. G., Barnes M., Cowley S. C., Dorland W. & Schekochihin A. A. 2008 Linearized model Fokker–Planck collision operators for gyrokinetic simulations. I. Theory. Phys. Plasmas 15 (12), 122509.
Barnes A. 1966 Collisionless damping of hydromagnetic waves. Phys. Fluids 9, 14831495.
Barnes M., Abel I. G., Dorland W., Ernst D. R., Hammett G. W., Ricci P., Rogers B. N., Schekochihin A. A. & Tatsuno T. 2009 Linearized model Fokker–Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests. Phys. Plasmas 16 (7), 072107.
Belcher J. W. & Davis L. Jr. 1971 Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534.
Bourouaine S. & Chandran B. D. G. 2013 Observational test of stochastic heating in low- inline-graphic $\unicode[STIX]{x1D6FD}$ fast-solar–wind streams. Astrophys. J. 774, 96.
Bourouaine S., Marsch E. & Vocks C. 2008 On the efficiency of nonresonant ion heating by coronal Alfvén waves. Astrophys. J. Lett. 684, L119.
Burch J. L., Moore T. E., Torbert R. B. & Giles B. L. 2016 Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199, 521.
Cerri S. S., Califano F., Jenko F., Told D. & Rincon F. 2016 Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations. Astrophys. J. Lett. 822, L12.
Chandran B. D. G. 2010 Alfvén-wave turbulence and perpendicular ion temperatures in coronal holes. Astrophys. J. 720, 548554.
Chandran B. D. G., Li B., Rogers B. N., Quataert E. & Germaschewski K. 2010 Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. 720, 503515.
Chen C. H. K., Boldyrev S., Xia Q. & Perez J. C. 2013 Nature of subproton scale turbulence in the solar wind. Phys. Rev. Lett. 110 (22), 225002.
Chen L., Lin Z. & White R. 2001 On resonant heating below the cyclotron frequency. Phys. Plasmas 8, 47134716.
Coleman P. J. Jr. 1968 Turbulence, viscosity, and dissipation in the solar–wind plasma. Astrophys. J. 153, 371.
Denskat K. U., Beinroth H. J. & Neubauer F. M. 1983 Interplanetary magnetic field power spectra with frequencies from 2.4 X 10 to the – 5th HZ to 470 HZ from HELIOS-observations during solar minimum conditions. J. Geophys. Zeitschrift Geophysik 54, 6067.
Dmitruk P., Matthaeus W. H. & Seenu N. 2004 Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. Astrophys. J. 617, 667679.
Fox N. J., Velli M. C., Bale S. D., Decker R., Driesman A., Howard R. A., Kasper J. C., Kinnison J., Kusterer M., Lario D. et al. 2016 The solar probe plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 748.
Frieman E. A. & Chen L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502508.
Gary S. P. 1999 Collisionless dissipation wavenumber: linear theory. J. Geophys. Res. 104, 67596762.
Goldstein M. L., Roberts D. A. & Fitch C. A. 1994 Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 1151911538.
Hollweg J. V. & Isenberg P. A. 2002 Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. 107, 1147.
Howes G. G. 2015 A dynamical model of plasma turbulence in the solar wind. Phil. Trans. R. Soc. Lond. A 373, 20140145.
Howes G. G. 2016 The dynamical generation of current sheets in astrophysical plasma turbulence. Astrophys. J. Lett. 827, L28.
Howes G. G. 2017 Ronald C. Davidson award 2016: a prospectus on kinetic heliophysics. Phys. Plasmas 24 (5), 055907.
Howes G. G., Bale S. D., Klein K. G., Chen C. H. K., Salem C. S. & TenBarge J. M. 2012 The slow-mode nature of compressible wave power in solar wind turbulence. Astrophys. J. Lett. 753, L19.
Howes G. G., Cowley S. C., Dorland W., Hammett G. W., Quataert E. & Schekochihin A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590614.
Howes G. G., Dorland W., Cowley S. C., Hammett G. W., Quataert E., Schekochihin A. A. & Tatsuno T. 2008 Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys. Rev. Lett. 100 (6), 065004.
Howes G. G., Klein K. G. & Li T. C. 2017 Diagnosing collisionless energy transfer using fieldparticle correlations: Vlasov–Poisson plasmas. J. Plasma Phys. 83 (1), 705830102.
Howes G. G., Klein K. G. & TenBarge J. M. 2014 Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind. Astrophys. J. 789, 106.
Howes G. G., Tenbarge J. M., Dorland W., Quataert E., Schekochihin A. A., Numata R. & Tatsuno T. 2011 Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107 (3), 035004.
Isenberg P. A. & Hollweg J. V. 1983 On the preferential acceleration and heating of solar wind heavy ions. J. Geophys. Res. 88, 39233935.
Johnson J. R. & Cheng C. Z. 2001 Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys. Res. Lett. 28, 44214424.
Karimabadi H., Roytershteyn V., Wan M., Matthaeus W. H., Daughton W., Wu P., Shay M., Loring B., Borovsky J., Leonardis E. et al. 2013 Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20 (1), 012303.
Kiyani K. H., Chapman S. C., Sahraoui F., Hnat B., Fauvarque O. & Khotyaintsev Y. V. 2013 Enhanced magnetic compressibility and isotropic scale invariance at sub-ion Larmor scales in solar wind turbulence. Astrophys. J. 763, 10.
Klein K. G. 2017 Characterizing fluid and kinetic instabilities using field-particle correlations on single-point time series. Phys. Plasmas 24 (5), 055901.
Klein K. G. & Chandran B. D. G. 2016 Evolution of the proton velocity distribution due to stochastic heating in the near-sun solar wind. Astrophys. J. 820, 47.
Klein K. G. & Howes G. G. 2015 Predicted impacts of proton temperature anisotropy on solar wind turbulence. Phys. Plasmas 22 (3), 032903.
Klein K. G. & Howes G. G. 2016 Measuring collisionless damping in heliospheric plasmas using fieldparticle correlations. Astrophys. J. Lett. 826 (2), L30.
Landau L. D. 1946 On the vibrations of the electronic plasma. J. Phys. (USSR) 10, 2534; [1946 Zh. Eksp. Teor. Fiz. 16, 574].
Leamon R. J., Smith C. W., Ness N. F., Matthaeus W. H. & Wong H. K. 1998 Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775.
Lehe R., Parrish I. J. & Quataert E. 2009 The heating of test particles in numerical simulations of Alfvénic turbulence. Astrophys. J. 707, 404419.
Markovskii S. A. & Vasquez B. J. 2011 A short-timescale channel of dissipation of the strong solar wind turbulence. Astrophys. J. 739, 22.
Matthaeus W. H. & Velli M. 2011 Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection. Space Sci. Rev. 160, 145168.
McChesney J. M., Stern R. A. & Bellan P. M. 1987 Observation of fast stochastic ion heating by drift waves. Phys. Rev. Lett. 59, 14361439.
Narita Y., Gary S. P., Saito S., Glassmeier K.-H. & Motschmann U. 2011 Dispersion relation analysis of solar wind turbulence. Geophys. Res. Lett. 38, 5101.
Nielson K. D., Howes G. G., Tatsuno T., Numata R. & Dorland W. 2010 Numerical modeling of large plasma device Alfvén wave experiments using AstroGK. Phys. Plasmas 17 (2), 022105.
Numata R., Howes G. G., Tatsuno T., Barnes M. & Dorland W. 2010 AstroGK: astrophysical gyrokinetics code. J. Comput. Phys. 229, 93479372.
Numata R. & Loureiro N. F. 2015 Ion and electron heating during magnetic reconnection in weakly collisional plasmas. J. Plasma Phys. 81, 30201.
Osman K. T., Kiyani K. H., Chapman S. C. & Hnat B. 2014a Anisotropic intermittency of magnetohydrodynamic turbulence. Astrophys. J. Lett. 783, L27.
Osman K. T., Matthaeus W. H., Gosling J. T., Greco A., Servidio S., Hnat B., Chapman S. C. & Phan T. D. 2014b Magnetic reconnection and intermittent turbulence in the solar wind. Phys. Rev. Lett. 112 (21), 215002.
Osman K. T., Matthaeus W. H., Greco A. & Servidio S. 2011 Evidence for inhomogeneous heating in the solar wind. Astrophys. J. Lett. 727, L11.
Osman K. T., Matthaeus W. H., Wan M. & Rappazzo A. F. 2012 Intermittency and local heating in the solar wind. Phys. Rev. Lett. 108 (26), 261102.
Perri S., Goldstein M. L., Dorelli J. C. & Sahraoui F. 2012 Detection of small-scale structures in the dissipation regime of solar–wind turbulence. Phys. Rev. Lett. 109 (19), 191101.
Plunk G. G. 2013 Landau damping in a turbulent setting. Phys. Plasmas 20 (3), 032304.
Podesta J. J. & TenBarge J. M. 2012 Scale dependence of the variance anisotropy near the proton gyroradius scale: additional evidence for kinetic Alfvén waves in the solar wind at 1 AU. J. Geophys. Res. 117, A10106.
Quataert E. 1998 Particle heating by alfvenic turbulence in hot accretion flows. Astrophys. J. 500, 978.
Roberts O. W., Li X. & Jeska L. 2015 A statistical study of the solar wind turbulence at ion kinetic scales using the inline-graphic $k$ -filtering technique and cluster data. Astrophys. J. 802, 2.
Roberts O. W., Li X. & Li B. 2013 Kinetic plasma turbulence in the fast solar wind measured by cluster. Astrophys. J. 769, 58.
Sahraoui F., Belmont G., Goldstein M. L. & Rezeau L. 2010 Limitations of multispacecraft data techniques in measuring wave number spectra of space plasma turbulence. J. Geophys. Res. 115, 4206.
Salem C. S., Howes G. G., Sundkvist D., Bale S. D., Chaston C. C., Chen C. H. K. & Mozer F. S. 2012 Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys. J. Lett. 745, L9.
Schekochihin A. A., Cowley S. C., Dorland W., Hammett G. W., Howes G. G., Quataert E. & Tatsuno T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310377.
Schekochihin A. A., Parker J. T., Highcock E. G., Dellar P. J., Dorland W. & Hammett G. W. 2016 Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. J. Plasma Phys. 82, 905820212.
Servidio S., Greco A., Matthaeus W. H., Osman K. T. & Dmitruk P. 2011 Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. J. Geophys. Res. 116, A09102.
Stix T. H. 1992 Waves in Plasmas. American Institute of Physics.
TenBarge J. M., Daughton W., Karimabadi H., Howes G. G. & Dorland W. 2014a Collisionless reconnection in the large guide field regime: gyrokinetic versus particle-in-cell simulations. Phys. Plasmas 21 (2), 020708.
TenBarge J. M. & Howes G. G. 2012 Evidence of critical balance in kinetic Alfvén wave turbulence simulations. Phys. Plasmas 19 (5), 055901.
TenBarge J. M. & Howes G. G. 2013 Current sheets and collisionless damping in kinetic plasma turbulence. Astrophys. J. Lett. 771, L27.
TenBarge J. M., Howes G. G. & Dorland W. 2013 Collisionless damping at electron scales in solar wind turbulence. Astrophys. J. 774, 139.
TenBarge J. M., Howes G. G., Dorland W. & Hammett G. W. 2014b An oscillating Langevin antenna for driving plasma turbulence simulations. Comput. Phys. Commun. 185, 578589.
TenBarge J. M., Podesta J. J., Klein K. G. & Howes G. G. 2012 Interpreting magnetic variance anisotropy measurements in the solar wind. Astrophys. J. 753, 107.
Vaivads A., Retinò A., Soucek J., Khotyaintsev Y. V., Valentini F., Escoubet C. P., Alexandrova O., André M., Bale S. D., Balikhin M. et al. 2016 Turbulence heating observeR – satellite mission proposal. J. Plasma Phys. 82 (5), 905820501.
Wan M., Matthaeus W. H., Karimabadi H., Roytershteyn V., Shay M., Wu P., Daughton W., Loring B. & Chapman S. C. 2012 Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett. 109 (19), 195001.
Wang X., Tu C., He J., Marsch E. & Wang L. 2013 On intermittent turbulence heating of the solar wind: differences between tangential and rotational discontinuities. Astrophys. J. Lett. 772, L14.
Wu P., Perri S., Osman K., Wan M., Matthaeus W. H., Shay M. A., Goldstein M. L., Karimabadi H. & Chapman S. 2013 Intermittent heating in solar wind and kinetic simulations. Astrophys. J. Lett. 763, L30.
Zhdankin V., Uzdensky D. A. & Boldyrev S. 2015 Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence. Phys. Rev. Lett. 114 (6), 065002.
Zhdankin V., Uzdensky D. A., Perez J. C. & Boldyrev S. 2013 Statistical analysis of current sheets in three-dimensional magnetohydrodynamic turbulence. Astrophys. J. 771, 124.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 91 *
Loading metrics...

Abstract views

Total abstract views: 169 *
Loading metrics...

* Views captured on Cambridge Core between 24th July 2017 - 15th December 2017. This data will be updated every 24 hours.