Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-05T11:43:57.634Z Has data issue: false hasContentIssue false

Local hardy and BMO spaces on non-homogeneous spaces

Published online by Cambridge University Press:  09 April 2009

Dachun Yang
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Beijing 100875, People's Republic of China, e-mail: dcyang@bnu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let µ be Radon measure on Rd which may be non doubling. The only condition that µ must satisfy is the size condition µ(B(x, r)) ≤ Crn for some fixed n є (0, d). Recently, Tolsa introduced the spaces RBMO(µ) and Hatb1.∞ (µ), which, in some ways, play the role of the classical spaces BMO and H1 in case u is a doubling measure. In this paper, the author considers the local versions of the spaces RBMO(µ) and Hatb1.∞ (µ) in the sense of Goldberg and establishes the connections between the spaces RBMO(µ) and Hatb1.∞ (µ) with their local versions. An interpolation result of linear operators is also given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Coifman, R. R. and Weiss, G., Analyse harmonique non-commutative sur ceratins espaces homogènes, Lecture Notes in Math. 242 (Springer, Berlin, 1971).CrossRefGoogle Scholar
[2]David, G., Journé, J.-L. and Semmes, S., ‘Opérateurs de Calderón-Zygmund, fonctions para-accrétive et interpolation’, Rev. Mat. Iberoamericana 1 (1985), 156.CrossRefGoogle Scholar
[3]García-Cuerva, J. and Rubio de Francia, J. L., Weighted norm inequalities and related topics, North-Holland Math. Studies 116 (North-Holland, Amsterdam, 1985).Google Scholar
[4]Goldberg, D., ‘A local version of real Hardy spaces’, Duke Math. 46 (1979), 2742.CrossRefGoogle Scholar
[5]Han, Y., ‘Triebel-Lizorkin spaces on spaces of homogeneous type’, Studia Math. 108 (1994), 247273.CrossRefGoogle Scholar
[6]Han, Y., Lu, S. and Yang, D., ‘Inhomogeneous Triebel-Lizorkin spaces on spaces of homogeneous type’, Math. Sci. Res. Hot-Line 3 (1999), 129.Google Scholar
[7]Journé, J.-L., Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Math. 994 (Springer, Berlin, 1983).CrossRefGoogle Scholar
[8]Mateu, J., Mattila, P., Nicolau, A. and Orobitg, J., ‘BMO for nondoubling measures’, Duke Math. J. 102 (2000), 533565.CrossRefGoogle Scholar
[9]Nazarov, F., Treil, S. and Volberg, A., ‘Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces’, Internat. Math. Res. Notices 15 (1997), 703726.CrossRefGoogle Scholar
[10]Nazarov, F., Treil, S. and Volberg, A., ‘Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces’, Internat. Math. Res. Notices 9 (1998), 463487.CrossRefGoogle Scholar
[11]Nazarov, F., Treil, S. and Volberg, A., ‘The Tb-theorem on non-homogeneous spaces’, Acta Math. 190 (2003), 151239.CrossRefGoogle Scholar
[12]Tolsa, X., ‘L2-boundedness of the Cauchy integral operator for continuous measures’, Duke Math. J. 98 (1999), 269304.CrossRefGoogle Scholar
[13]Tolsa, X., ‘B M O, H1, and Calderón-Zygmund operators for non doubling measures’, Math. Ann. 319 (2001), 89149.CrossRefGoogle Scholar
[14]Tolsa, X., ‘Littlewood-Paley theory and the T(1) theorem with non doubling measures’, Adv. Math. 164 (2001), 57116.CrossRefGoogle Scholar
[15]Tolsa, X., ‘The space H1 for non doubling measures in terms of a grand maximal operator’, Trans. Amer. Math. Soc. 355 (2003), 315348.CrossRefGoogle Scholar
[16]Verdera, J., ‘On the T(1) theorem for the Cauchy integral’, Ark. Mat. 38 (2000), 183199.CrossRefGoogle Scholar