No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
If V is a system of weights on a completely regular Hausdorff space X and E is alocally convex space, then CV0(X, E) and CVb (X, E) are locally convex spaces of vector-valued continuous functions with topologies generated by seminorms which are weighted analogues of the supremum norm. In this paper we characterise multiplication operators on these spaces induced by scalar-valued and vector-valued mappings. Many examples are presented to illustrate the theory.