Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T09:40:07.235Z Has data issue: false hasContentIssue false

POLYNOMIAL EQUIVALENCE OF FINITE RINGS

Published online by Cambridge University Press:  01 April 2014

GEORG GRASEGGER
Affiliation:
Doctoral Program Computational Mathematics, Research Institute for Symbolic Computation, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria email Georg.Grasegger@risc.jku.at
GÁBOR HORVÁTH*
Affiliation:
Institute of Mathematics, University of Debrecen, Pf. 12, 4010 Debrecen, Hungary
KEITH A. KEARNES
Affiliation:
Department of Mathematics, University of Colorado, Boulder, CO 80309-0395, USA email Keith.Kearnes@Colorado.EDU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that ${ \mathbb{Z} }_{{p}^{n} } $ and ${ \mathbb{Z} }_{p} [t] / ({t}^{n} )$ are polynomially equivalent if and only if $n\leq 2$ or ${p}^{n} = 8$. For the proof, employing Bernoulli numbers, we explicitly provide the polynomials which compute the carry-on part for the addition and multiplication in base $p$. As a corollary, we characterize finite rings of ${p}^{2} $ elements up to polynomial equivalence.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Bulatov, A. A., ‘Polynomial clones containing the Mal’tsev operation of the groups ${ \mathbb{Z} }_{{p}^{2} } $ and ${ \mathbb{Z} }_{p} \times { \mathbb{Z} }_{p} $’, Mult.-Valued Log. 8 (2) (2002), 193221.CrossRefGoogle Scholar
Clausen, T., ‘Theorem’, Astron. Nachr. 17 (1840), 351352.Google Scholar
Fine, B., ‘Classification of finite rings of order ${p}^{2} $’, Math. Mag. 66 (4) (1993), 248252.Google Scholar
Frisch, S., ‘Polynomial functions on finite commutative rings’, in: Advances in Commutative Ring Theory. Proc. 3rd Int. Conf., Fez, Morocco, Lecture Notes in Pure and Applied Mathematics, 205 (ed. Dobbs, D. E.) (Marcel Dekker, New York, 1999), 323336.Google Scholar
Hobby, D. and McKenzie, R., The Structure of Finite Algebras, Contemporary Mathematics 76 (American Mathematical Society, Providence, RI, 1988).Google Scholar
Idziak, P. M. and Słomczyńska, K., ‘Polynomially rich algebras’, J. Pure Appl. Algebra 156 (1) (2001), 3368.Google Scholar
Ireland, K. and Rosen, M., A Classical Introduction to Modern Number Theory (Springer, New York, 1982).Google Scholar
Istinger, M. and Kaiser, H. K., ‘A characterization of polynomially complete algebras’, J. Algebra 56 (1) (1979), 103110.Google Scholar
Maurer, W. D. and Rhodes, J. L., ‘A property of finite simple nonabelian groups’, Proc. Amer. Math. Soc. 16 (1965), 552554.Google Scholar
Rédei, L. and Szele, T., ‘Algebraischzahlentheoretische Betrachtungen über Ringe. I’, Acta Math. 79 (1947), 291320.Google Scholar
Schottenfels, I. M., ‘Two nonisomorphic simple groups of the same order 20,160’, Ann. of Math. (2) 1 (1–4) (1899–1900), 147152.Google Scholar
von Staudt, Ch., ‘Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend’, J. reine angew. Math. 21 (1840), 372374.Google Scholar