Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-5k9ck Total loading time: 0.378 Render date: 2022-06-28T07:18:47.185Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Computing canonical heights on elliptic curves in quasi-linear time

Published online by Cambridge University Press:  26 August 2016

J. Steffen Müller
Affiliation:
Institut für Mathematik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany email jan.steffen.mueller@uni-oldenburg.de
Michael Stoll
Affiliation:
Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany email Michael.Stoll@uni-bayreuth.de

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce an algorithm that can be used to compute the canonical height of a point on an elliptic curve over the rationals in quasi-linear time. As in most previous algorithms, we decompose the difference between the canonical and the naive height into an archimedean and a non-archimedean term. Our main contribution is an algorithm for the computation of the non-archimedean term that requires no integer factorization and runs in quasi-linear time.

Type
Research Article
Copyright
© The Author(s) 2016 

References

Bernardi, D., ‘Hauteur p-adique sur les courbes elliptiques’, Seminar on number theory, Paris 1979–1980 , Progress in Mathematics 12 (Birkhäuser, Boston, MA, 1981) 114.Google Scholar
Bernstein, D. J., ‘Research announcement: Faster factorization into coprimes’, Preprint, 2004.Google Scholar
Bernstein, D. J., ‘Factoring into coprimes in essentially linear time’, J. Algorithms 54 (2005) 130.CrossRefGoogle Scholar
Borwein, J. M. and Borwein, P. B., Pi and the AGM , Canadian Mathematical Society Series of Monographs and Advanced Texts 4 (John Wiley & Sons, Inc., New York, 1998).Google Scholar
Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997) no. 3–4, 235265.CrossRefGoogle Scholar
Bost, J.-B. and Mestre, J.-F., Calcul de la hauteur archimédienne des points d’une courbe elliptique par un algorithme quadratiquement convergent et application au calcul de la capacité de l’union de deux intervalles, unpublished manuscript, 1993.Google Scholar
Bradshaw, R. W., ‘Provable computation of motivic $L$ -functions’, PhD Thesis, University of Washington, 2010.Google Scholar
Buchmann, J. A. and Lenstra, H. W. Jr, ‘Approximating rings of integers in number fields’, J. Théor. Nombres Bordeaux 6 (1994) no. 2, 221260.CrossRefGoogle Scholar
Cohen, H., A course in computational algebraic number theory (Springer, Berlin, Heidelberg, New York, 1993).CrossRefGoogle Scholar
Cremona, J., Prickett, M. and Siksek, S., ‘Height difference bounds for elliptic curves over number fields’, J. Number Theory 116 (2006) no. 1, 4268.CrossRefGoogle Scholar
Everest, G. and Ward, T., ‘The canonical height of an algebraic point on an elliptic curve’, New York J. Math. 6 (2000) 331342.Google Scholar
Flynn, E. V. and Smart, N. P., ‘Canonical heights on the Jacobians of curves of genus 2 and the infinite descent’, Acta Arith. 79 (1997) no. 4, 333352.Google Scholar
Néron, A., ‘Quasi-fonctions et hauteurs sur les variétés abéliennes’, Ann. of Math. (2) 82 (1965) 249331.CrossRefGoogle Scholar
Silverman, J. H., ‘Computing heights on elliptic curves’, Math. Comp. 51 (1988) no. 183, 339358.CrossRefGoogle Scholar
Silverman, J. H., Advanced topics in the arithmetic of elliptic curves , Graduate Texts in Mathematics 151 (Springer, New York, 1994).CrossRefGoogle Scholar
Silverman, J. H., ‘Computing canonical heights with little (or no) factorization’, Math. Comp. 66 (1997) no. 218, 787805.CrossRefGoogle Scholar
Tschöpe, H. M. and Zimmer, H. G., ‘Computation of the Néron–Tate height on elliptic curves’, Math. Comp. 48 (1987) no. 177, 351370.CrossRefGoogle Scholar
Zimmer, H. G., ‘A limit formula for the canonical height of an elliptic curve and its application to height computations’, Number theory, Banff, AB (de Gruyter, Berlin, 1990) 641659.Google Scholar
You have Access
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Computing canonical heights on elliptic curves in quasi-linear time
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Computing canonical heights on elliptic curves in quasi-linear time
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Computing canonical heights on elliptic curves in quasi-linear time
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *