Skip to main content Accessibility help
×
×
Home

Division algebras and maximal orders for given invariants

  • Gebhard Böckle (a1) and Damián Gvirtz (a2)
Abstract

Brauer classes of a global field can be represented by cyclic algebras. Effective constructions of such algebras and a maximal order therein are given for $\mathbb{F}_{q}(t)$ , excluding cases of wild ramification. As part of the construction, we also obtain a new description of subfields of cyclotomic function fields.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Division algebras and maximal orders for given invariants
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Division algebras and maximal orders for given invariants
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Division algebras and maximal orders for given invariants
      Available formats
      ×
Copyright
References
Hide All
1. Anglès, B., ‘Bases normales relatives en caractéristique positive’, J. Théor. Nombres Bordeaux 14 (2002) no. 1, 117.
2. Böckle, G. and Butenuth, R., ‘On computing quaternion quotient graphs for function fields’, J. Théor. Nombres Bordeaux 24 (2012) no. 1, 7399.
3. Chapman, R. J., ‘Carlitz modules and normal integral bases’, J. Lond. Math. Soc. (2) 44 (1991) no. 2, 250260.
4. Deuring, M., Algebren , 2nd edn, Ergebnisse der Mathematik und ihrer Grenzgebiete 41 (Springer, Berlin, 1968).
5. Galovich, S. and Rosen, M., ‘Units and class groups in cyclotomic function fields’, J. Number Theory 14 (1982) no. 2, 156184.
6. Goss, D., Basic structures of function field arithmetic , Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 35 (Springer, Berlin, 1996).
7. Guruswami, V., ‘Cyclotomic function fields, Artin–Frobenius automorphisms, and list error correction with optimal rate’, Algebra Number Theory 4 (2010) no. 4, 433463.
8. Jantzen, J. C. and Schwermer, J., Algebra (Springer, Berlin, 2006).
9. Knuth, D. E., The art of computer programming, Vol. 1: Fundamental algorithms , 3rd edn (Addison-Wesley, Reading, MA, 1997).
10. Lettl, G., ‘The ring of integers of an abelian number field’, J. reine angew. Math. 404 (1990) 162170.
11. Lorenz, F., ‘Fields with structure, algebras and advanced topics’, Algebra, Vol. II , Universitext (Springer, New York, 2008). Translated from the German by Silvio Levy, with the collaboration of Levy.
12. Neukirch, J., Algebraische Zahlentheorie , 1st edn (Springer, Berlin, 1992).
13. Reiner, I., Maximal orders (Academic Press, London, 1975).
14. Rosen, M., Number theory in function fields , Graduate Texts in Mathematics 210 (Springer, New York, 2002).
15. Rzedowski-Calderón, M. and Villa-Salvador, G., ‘Conductor-discriminant formula for global function fields’, Int. J. Algebra 5 (2011) no. 29–32, 15571565.
16. Schwinning, N., ‘Ein Algorithmus zur Berechnung von Divisionsalgebren über $\mathbb{Q}$ zu vorgegebenen Invarianten’, Diplomarbeit, Universität Duisburg-Essen, Germany, 2011.
17. Serre, J.-P., Local fields, Graduate Texts in Mathematics 67 (Springer, New York, 1979). Translated from the French by Marvin Jay Greenberg.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

LMS Journal of Computation and Mathematics
  • ISSN: -
  • EISSN: 1461-1570
  • URL: /core/journals/lms-journal-of-computation-and-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed