Skip to main content Accessibility help
×
Home

Nonvanishing of twists of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}L$ -functions attached to Hilbert modular forms

  • Nathan C. Ryan (a1), Gonzalo Tornaría (a2) and John Voight (a3)

Abstract

We describe algorithms for computing central values of twists of $L$ -functions associated to Hilbert modular forms, carry out such computations for a number of examples, and compare the results of these computations to some heuristics and predictions from random matrix theory.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nonvanishing of twists of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}L$ -functions attached to Hilbert modular forms
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nonvanishing of twists of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}L$ -functions attached to Hilbert modular forms
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nonvanishing of twists of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}L$ -functions attached to Hilbert modular forms
      Available formats
      ×

Copyright

References

Hide All
1.Baruch, E. M. and Mao, Z., ‘Central value of automorphic L-functions’, Geom. Funct. Anal. 17 (2007) no. 2, 333384.
2.Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997) no. 3–4, 235265; Computational algebra and number theory (London, 1993).
3.Böcherer, S. and Schulze-Pillot, R., ‘On a theorem of Waldspurger and on Eisenstein series of Klingen type’, Math. Ann. 288 (1990) no. 3, 361388.
4.Conrey, J. B., Keating, J. P., Rubinstein, M. O. and Snaith., N. C., ‘On the frequency of vanishing of quadratic twists of modular L-functions’, Number theory for the millennium, I (Urbana, IL, 2000) (A K Peters, Natick, MA, 2002) 301315.
5.Conrey, J. B., Keating, J. P., Rubinstein, M. O. and Snaith, N. C., ‘Random matrix theory and the Fourier coefficients of half-integral-weight forms’, Experiment Math. 15 (2006) no. 1, 6782.
6.David, C., Fearnley, J. and Kisilevsky, H., ‘Vanishing of L-functions of elliptic curves over number fields’, Ranks of elliptic curves and random matrix theory, London Mathematical Society Lecture Note Series 341 (Cambridge University Press, Cambridge, 2007) 247259.
7.Delaunay, C. and Watkins, M., ‘The powers of logarithm for quadratic twists’, Ranks of elliptic curves and random matrix theory, London Mathematical Society Lecture Note Series 341 (Cambridge University Press, Cambridge, 2007) 189193.
8.Dembélé, L., ‘Quaternionic Manin symbols, Brandt matrices, and Hilbert modular forms’, Math. Comp. 76 (2007) no. 258, 10391057.
9.Démbéle, L., Donnelly, S. and Voight, J., LMFDB: ${L}$-function and modular form database, 2013,http://www.lmfdb.org.
10.Dembélé, L. and Voight, J., ‘Explicit methods for Hilbert modular forms’, Elliptic curves, Hilbert modular forms and Galois deformations (Birkhäuser, Basel, 2013) 135198.
11.Diaz y Diaz, F. and Friedman, E., ‘Colmez cones for fundamental units of totally real cubic fields’, J. Number Theory 132 (2012) no. 8, 16531663.
12.Fincke, U. and Pohst., M., ‘Improved methods for calculating vectors of short length in a lattice, including a complexity analysis’, Math. Comp. 44 (1985) no. 170, 463471.
13.Freitag, E., Hilbert modular forms (Springer, Berlin, 1990).
14.Goren, E. Z., Lectures on Hilbert modular varieties and modular forms, CRM Monograph Series 14 (American Mathematical Society, Providence, RI, 2002) With the assistance of Marc-Hubert Nicole.
15.Gross, B. H., ‘Heights and the special values of L-series’, Number theory (Montreal, Que., 1985), CMS Conference Proceedings 7 (American Mathematical Society, Providence, RI, 1987) 115187.
16.Halbritter, U. and Pohst, M. E., ‘On lattice bases with special properties’, J. Théor. Nombres Bordeaux 12 (2000) no. 2, 437453; Colloque International de Théorie des Nombres (Talence, 1999).
17.Hart, W. B., Tornaría, G. and Watkins, M., ‘Congruent number theta coefficients to 1012’, Algorithmic number theory (Springer, 2010) 186200.
18.Hiraga, K. and Ikeda, T., ‘On the Kohnen plus space for Hilbert modular forms of half-integral weight I’, Compos. Math. 149 (2013) no. 12, 19632010.
19.Keating, J. P. and Snaith, N. C., ‘Random matrix theory and L-functions at s = 1∕2’, Comm. Math. Phys. 214 (2000) no. 1, 91110.
20.Keating, J. P. and Snaith, N. C., ‘Random matrix theory and ζ (1∕2 + i t)’, Comm. Math. Phys. 214 (2000) no. 1, 5789.
21.Kirschmer, M. and Voight, J., ‘Algorithmic enumeration of ideal classes for quaternion orders’, SIAM J. Comput. 39 (2010) no. 5, 17141747.
22.Kirschmer, M. and Voight, J., ‘Corrigendum: Algorithmic enumeration of ideal classes for quaternion orders’, SIAM J. Comput. 41 (2012) no. 3, 714; MR 2592031.
23.Lenstra, A. K., Lenstra, H. W. Jr. and Lovász, L., ‘Factoring polynomials with rational coefficients’, Math. Ann. 261 (1982) no. 4, 515534.
24.Mao, Z., Rodriguez-Villegas, F. and Tornaría, G., ‘Computation of central value of quadratic twists of modular L-functions’, Ranks of elliptic curves and random matrix theory, London Mathematical Society Lecture Note Series 341 (Cambridge University Press, Cambridge, 2007) 273288.
25.Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) 322 (Springer, Berlin, 1999) Translated from the 1992 German original and with a note by Norbert Schappacher, with a foreword by G. Harder.
26.Okazaki, R., ‘On an effective determination of a Shintani’s decomposition of the cone R+n’, J. Math. Kyoto Univ. 33 (1993) no. 4, 10571070.
27.Pacetti, A. and Tornaría, G., ‘Examples of the Shimura correspondence for level p 2 and real quadratic twists’, Ranks of elliptic curves and random matrix theory, London Mathematical Society Lecture Note Series 341 (Cambridge University Press, Cambridge, 2007) 289314.
28.Pacetti, A. and Tornaría, G., ‘Shimura correspondence for level p 2 and the central values of L-series’, J. Number Theory 124 (2007) no. 2, 396414.
29.Pacetti, A. and Tornaría, G., ‘Computing central values of twisted L-series: the case of composite levels’, Experiment. Math. 17 (2008) no. 4, 459471.
30.Rosson, H. and Tornaría, G., ‘Central values of quadratic twists for a modular form of weight 4’, Ranks of elliptic curves and random matrix theory, London Mathematical Society Lecture Note Series 341 (Cambridge University Press, Cambridge, 2007) 315321.
31.Rubinstein, M. O., lcalc: The L-function calculator, a C++ class library and command line program, 2008, http://www.math.uwaterloo.ca/∼mrubinst.
32.Shimura, G., ‘The special values of the zeta functions associated with Hilbert modular forms’, Duke Math. J. 45 (1978) no. 3, 637679.
33.Shimura, G., ‘On Eisenstein series of half-integral weight’, Duke Math. J. 52 (1985) no. 2, 281314.
34.Shimura, G., ‘On Hilbert modular forms of half-integral weight’, Duke Math. J. 55 (1987) no. 4, 765838.
35.Shimura, G., ‘On the Fourier coefficients of Hilbert modular forms of half-integral weight’, Duke Math. J. 71 (1993) no. 2, 501557.
36.Shimura, G., ‘On the transformation formulas of theta series’, Amer. J. Math. 115 (1993) no. 5, 10111052.
37.Shintani, T., ‘On evaluation of zeta functions of totally real algebraic number fields at non-positive integers’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976) no. 2, 393417.
38.Sirolli, N., Preimages for the Shimura map on Hilbert modular forms, Preprint, 2012, arXiv:1208.4011 [math.NT].
39.Socrates, J. and Whitehouse, D., ‘Unramified Hilbert modular forms, with examples relating to elliptic curves’, Pacific J. Math. 219 (2005) no. 2, 333364.
40.Thomas, E. and Vasquez, A. T., ‘On the resolution of cusp singularities and the Shintani decomposition in totally real cubic number fields’, Math. Ann. 247 (1980) no. 1, 120.
41.van der Geer, G., Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 16 (Springer, Berlin, 1988).
42.Vignéras, M.-F., ‘Arithmétique des algèbres de quaternions’, Lecture Notes in Mathematics 800 (Springer, Berlin, 1980).
43.Waldspurger, J.-L., ‘Sur les coefficients de Fourier des formes modulaires de poids demi-entier’, J. Math. Pures Appl. (9) 60 (1981) no. 4, 375484.
44.Watkins, M., ‘On elliptic curves and random matrix theory’, J. Théor. Nombres Bordeaux 20 (2008) no. 3, 829845.
45.Watkins, M., ‘Some heuristics about elliptic curves’, Experiment Math. 17 (2008) no. 1, 105125.
46.Xue, H., ‘Central values of L-functions and half-integral weight forms’, Proc. Amer. Math. Soc. 139 (2011) no. 1, 2130.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed