Adámek, J., Koubek, V. and Velebil, J. (2000). A duality between infinitary varieties and algebraic theories. Commentationes Mathematicae Universitatis Carolinae
41
(3)
529–541.

Adámek, J. and Rosický, J. (1994). Locally Presentable and Accessible Categories, Cambridge University Press.

Adámek, J. and Rosický, J. (2001). On sifted colimits and generalized varieties. Theory Applications of Categories
8
33–53.

Adámek, J., Rosický, J. and Vitale, E. (2011). Algebraic Theories, Cambridge Tracts in Mathematics volume 184, Cambridge University Press, Cambridge.

Albert, M. H. and Kelly, G. M. (1988). The closure of a class of colimits. Journal of Pure and Applied Algebra
51
1–17.

Barr, M., Grillet, P. A. and van Osdol, D. H. (1971). Exact Categories and Categories of Sheaves, LNM volume 236, Springer.

Bird, G. J. (1984). *Limits in 2-Categories of Locally-Presented Categories*, Ph.D. thesis, The University of Sydney.

Bloom, S. L. (1976). Varieties of ordered algebras. Journal of Computer and System Sciences
13
(2)
200–212.

Bloom, S. L. and Wright, J. B. (1983). P-varieties — A signature independent characterization of varieties of ordered algebras. Journal of Pure and Applied Algebra
29
13–58.

Bourke, J. (August 2010). *Codescent Objects in 2-Dimensional Universal Algebra*, Ph.D. thesis, University of Sydney.

Bourke, J. and Garner, R. (2014). Two-dimensional regularity and exactness. Journal of Pure and Applied Algebra
218
(7)
1346–1371.

Cohn, P. (1981). Universal Algebra, Springer.

Duskin, J. (1969). Variations on Beck's Tripleability Criterion, LNM volume 106, Springer-Verlag
74–129.

El Bashir, R. and Velebil, J. (2002). Simultaneously reflective and coreflective subcategories of presheaves. Theory Applications of Categories
10
410–423.

Gabriel, P. and Ulmer, F. (1971). Lokal präsentierbare Kategorien, Lecture Notes in Mathematics volume 221, Springer.

Goguen, J., Thatcher, J., Wagner, E. and Wright, J. (1977). Initial algebra semantics and continuous algebras. Journal of the ACM
24
(1)
68–95.

Hyland, M. and Power, J. (2006). Discrete Lawvere theories and computational effects. Theoretical Computer Science
366
144–162.

Isbell, J. (1964). Subobjects, adequacy, completeness and categories of algebras. Rozprawy Math. XXXVI
1–33.

Kelly, G. M. (1982). Structures defined by finite limits in the enriched context I. Cahiers de Géometrie Differentielle
XXIII.1
3–42.

Kelly, G. M. (1989). Elementary observations on 2-categorical limits. Bulletin of the Australian Mathematical Society
39
301–317.

Kelly, G. M. (2005). Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series volume 64, Cambridge University Press, 1982, also available as *Repr. Theory Appl. Categ.*
**10**.

Kelly, G. M. and Lack, S. (1993). Finite product-preserving-functors, Kan extensions and strongly-finitary 2-monads. Applied Categorical Structures
1
85–94.

Kelly, G. M. and Power, A. J. (1993). Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. Journal of Pure and Applied Algebra
89
163–179.

Kelly, G. M. and Schmitt, V. (2005). Notes on enriched categories with colimits of some class. Theory and Applications of Categories
14
(17)
399–423.

Kozen, D. (1994). A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation
110
(2)
366–390.

Kurz, A. and Velebil, J. (2013). Enriched logical connections. Applied Categorical Structures
21
(4)
349–377.

Lack, S. (2002) Codescent objects and coherence.
Journal of Pure and Applied Algebra
175
223–241.

Lack, S. and Rosický, J. (2011). Notions of Lawvere theory. Applied Categorical Structures
19
(1)
363–391.

Lair, C. (1996). Sur le genre d'esquissabilité des catégories modelables (accessibles) possédant les produits de deux. Diagrammes
35
25–52.

Lawvere, F. W. (2004).
*Functorial Semantics of Algebraic Theories*
, Ph.D. thesis, Columbia University 1963, available as Repr. Theory Appl. Categ.
5
1–121.

Linton, F. E. J. (1966). Some aspects of equational categories. In: Proc. Conf. Categ. Alg. La Jolla 1965, Springer
84–94.

Mac Lane, S. (1971). Categories for the Working Mathematician, Springer.

Métayer, F. State monads and their algebras. arXiv:math.CT/0407251v1.

Pin, J.-E. (1997). Syntactic semigroups. Chap. 10 In: Handbook of Language Theory, volume I, Springer-Verlag
679–746.

Raftery, J. (2013). Order algebraizable logics. Annals of Pure and Applied Logic
164
251–283.

Scott, D. (1971). The Lattice of Flow Diagrams LNM volume 188, Springer-Verlag
311–366.

Street, R. (1974). Fibrations and Yoneda's Lemma in a 2-Category, Lecture Notes in Mathematics volume 420, Springer
104–133.

Street, R. (1982). Two-dimensional sheaf theory. Journal of Pure and Applied Algebra
24
251–270.

Street, R. and Walters, R. F. C. (1978). Yoneda structures on 2-categories. Journal of Algebra
50
350–379.

Vitale, E. (1994). On the characterization of monadic categories over set. Cahiers de Topologie et Géometrie Differentielle
XXXV.4
351–358.