Skip to main content

Energy in buildings—Policy, materials and solutions

  • Matthias M. Koebel (a1), Jannis Wernery (a1) and Wim J. Malfait (a1)

This manuscript provides a bird’s eye view on energy in buildings. We discuss how energy policy leads to building standards that affect innovation in the building sector. We review current and future materials and solutions for the building envelope (insulation and glazing), renewable energy generation and energy storage, and demonstrate how the integration of buildings into district networks mitigates problems arising from a building’s, and its users’, dynamic behavior.

Buildings account for ∼40% of global energy demands, and the increased adoption of innovative solutions for buildings represents an enormous potential to reduce energy demands and greenhouse gas emissions. Here, we critically review the current and future materials and solutions for the construction sector. We describe how policy affects innovative businesses and the adoption of new products and solutions. We investigate how the building envelope and user behavior determine building energy demands. Compared to conventional solutions, superinsulation materials (vacuum insulation panels, silica aerogel) can achieve the same thermal performance with drastically thinner insulation. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduces thermal losses by an order of magnitude. Vacuum and aerogel glazing reduce these even further. Switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems, buildings become both producers and consumers of energy. Combined with the dynamic user behavior, temporal variations in energy production require thermal and electrical storage and the integration of buildings into smart grids and energy district networks. The combination of these measures can reduce the energy consumption of the building’s stock by a factor of three.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Energy in buildings—Policy, materials and solutions
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Energy in buildings—Policy, materials and solutions
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Energy in buildings—Policy, materials and solutions
      Available formats
Corresponding author
a) Address all correspondence to Matthias M. Koebel at
Hide All
1. Parmesan C. and Yohe G.: A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918), 3742 (2003).
2. Christianson G.E.: Greenhouse; the 200-Year Story of Global Warming (Walker & Company, New York, NY, 1999).
3. Easterling D.R., Meehl G.A., Parmesan C., Changnon S.A., Karl T.R., and Mearns L.O.: Climate extremes: Observations, modeling, and impacts. Science 289(5487), 20682074 (2000).
4. Menzel A., Sparks T.H., Estrella N., Koch E., Aasa A., Ahas R., Alm-Kübler K., Bissolli P., Braslavská O., and Briede A.: European phenological response to climate change matches the warming pattern. Global Change Biol. 12(10), 19691976 (2006).
5. McCright A.M. and Dunlap R.E.: Defeating Kyoto: The conservative movement’s impact on US climate change policy. Soc. Probl. 50(3), 348373 (2003).
6. Coumou D. and Rahmstorf S.: A decade of weather extremes. Nat. Clim. Change 2(7), 491496 (2012).
7. Leiserowitz A.A.: American risk perceptions: Is climate change dangerous? Risk Anal. 25(6), 14331442 (2005).
8. Lorenzoni I. and Pidgeon N.F.: Public views on climate change: European and USA perspectives. Clim. Change 77(1–2), 7395 (2006).
9. Haines A., Smith K.R., Anderson D., Epstein P.R., McMichael A.J., Roberts I., Wilkinson P., Woodcock J., and Woods J.: Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change. Lancet 370(9594), 12641281 (2007).
10. Biesbroek G.R., Swart R.J., Carter T.R., Cowan C., Henrichs T., Mela H., Morecroft M.D., and Rey D.: Europe adapts to climate change: Comparing national adaptation strategies. Global Environ. Change 20(3), 440450 (2010).
11. Tompkins E.L., Adger W.N., Boyd E., Nicholson-Cole S., Weatherhead K., and Arnell N.: Observed adaptation to climate change: UK evidence of transition to a well-adapting society. Global Environ. Change 20(4), 627635 (2010).
12. Meinshausen M., Meinshausen N., Hare W., Raper S.C., Frieler K., Knutti R., Frame D.J., and Allen M.R.: Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458(7242), 11581162 (2009).
13. Enerdata Statistical Yearbook (2016). Available at: (accessed June 21, 2017).
14. He Y., Xu Y., Pang Y., Tian H., and Wu R.: A regulatory policy to promote renewable energy consumption in China: Review and future evolutionary path. Renew. Energy 89, 695705 (2016).
15. Jacobsson S. and Lauber V.: The politics and policy of energy system transformation—Explaining the German diffusion of renewable energy technology. Energy Policy 34(3), 256276 (2006).
16. Chowdhury S., Sumita U., Islam A., and Bedja I.: Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany. Energy Policy 68, 285293 (2014).
17. Lauber V. and Jacobsson S.: The politics and economics of constructing, contesting and restricting socio-political space for renewables–The German Renewable Energy Act. Environ. Innov. Soc. Transit. 18, 147163 (2016).
18. Ürge-Vorsatz D., Cabeza L.F., Serrano S., Barreneche C., and Petrichenko K.: Heating and cooling energy trends and drivers in buildings. Renewable Sustainable Energy Rev. 41, 8598 (2015).
19. Roberts S.: Effects of climate change on the built environment. Energy Policy 36(12), 45524557 (2008).
20. Pongiglione M. and Calderini C.: Sustainable structural design: Comprehensive literature review. J. Struct. Eng. 142(12), 4016139 (2016).
21. LaFrance M.: Technology Roadmap: Energy Efficient Building Envelopes (International Energy Agency, Paris, 2013).
22. Mirasgedis S., Georgopoulou E., Sarafidis Y., Balaras C., Gaglia A., and Lalas D.: CO2 emission reduction policies in the Greek residential sector: A methodological framework for their economic evaluation. Energy Convers. Manage. 45(4), 537557 (2004).
23. Martinsen D., Markewitz P., and Vögele P.M.S.: Roads to Carbon Reduction in Germany (International Workshop by Energy Modelling Forum, IEA and IIASA, Laxenburg, Austria, 2003).
24. Lechtenböhmer S., Grimm V., Mitze D., Thomas S., and Wissner M.: Target 2020: Policies and Measures to Reduce Greenhouse Gas Emissions in the EU (Wuppertal Institut für Klima, Umwelt, Energie, Wuppertal, Germany, 2005).
25. Enviros Consulting Ltd.: Review and Development of Carbon Abatement Curves for Available Technologies as Part of the Energy Efficiency Innovation Review (Enviros, Prague, 2005).
26. Jaccard M.K.: Construction and Analysis of Sectoral, Regional and National Cost Curves of GHG Abatement of Canada (Natural Resources Canada, Vancouver, 2002).
27. Koomey J.G., Webber C.A., Atkinson C.S., and Nicholls A.: Addressing energy-related challenges for the US buildings sector: Results from the clean energy futures study. Energy Policy 29(14), 12091221 (2001).
28. National Institute for Environmental Studies Japan: GHG Emissions and Climate Change (NIES, Tsukuba, 2004).
29. ERI National Development and Reform Commission: China National Energy Strategy and Policy to 2020 (ERI, Beijing, 2004).
30. Murakami S., Levine M.D., Yoshino H., Inoue T., Ikaga T., Shimoda Y., Miura S., Sera T., Nishio M., and Sakamoto Y.: Energy consumption and mitigation technologies of the building sector in Japan. In 6th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings IAQVEC (Tohoku University Press, Sendai, Japan, 2007).
31. Izrael Y.A., Avdjuhsin S.I., Nazarov I.M., Kokorin A.O., Nakhutin A.I., and Yakovlev A.F.: Russian Federation Climate Change Country Study, Climate Change Action Plan (Russian Federal Service for Hydrometeorology and Environmental Monitoring, Moscow, 1999).
32. Australian Greenhouse Office: National appliances and equipment programs: When you keep measuring it, you know even more about it—Projected impacts 2005–2020 (2005). Available at: (accessed June 21, 2017).
33. Ürge-Vorsatz D. and Novikova A.: Potentials and costs of carbon dioxide mitigation in the world’s buildings. Energy Policy 36(2), 642661 (2008).
34. Ionescu C., Baracu T., Vlad G-E., Necula H., and Badea A.: The historical evolution of the energy efficient buildings. Renewable Sustainable Energy Rev. 49, 243253 (2015).
35. Bozsaky D.: The historical development of thermal insulation materials. Period. Polytech. 41(2), 4956 (2010).
36. A’zami A.: Badgir in traditional Iranian architecture. International Conference “Passive and Low Energy Colling for the Built Environment (Santorini, Greece, 2005).
37. Stetson T.D.: Improvement in window-glass (1865). Available at: (accessed November 21, 2016).
38. 80 years: The House of Tomorrow: Solar house history. Available at: (accessed November 21, 2016).
39. SOLAR 7: History • Solar1. Available at: (accessed November 21, 2016).
40. Kusuda T.: Early history and future prospects of building system simulation. In Proceedings of Building Simulation, Vol. 99 (1999); pp. 315.
41. Van Hoof J.: Forty years of Fanger’s model of thermal comfort: Comfort for all? Indoor Air 18(3), 182201 (2008).
42. Feist W. and Schnieders J.: Energy efficiency—A key to sustainable housing. Eur. Phys. J.: Spec. Top. 176(1), 141153 (2009).
43. Voss K., Goetzberger A., Bopp G., Häberle A., Heinzel A., and Lehmberg H.: The self-sufficient solar house in Freiburg—Results of 3 years of operation. Sol. Energy 58(1), 1723 (1996).
44. Wohlgemuth D., von Gunten D., Manz H., Zeyer C., and Althaus H-J.: Ökologisch optimale Dämmdicken bei Wohngebäuden. Bauphysik 37(5), 277283 (2015).
45. Kaynakli O.: A review of the economical and optimum thermal insulation thickness for building applications. Renewable Sustainable Energy Rev. 16(1), 415425 (2012).
46. Al-Homoud M.S.: The effectiveness of thermal insulation in different types of buildings in hot climates. J. Therm. Envelope Build. Sci. 27(3), 235247 (2004).
47. Sadineni S.B., Madala S., and Boehm R.F.: Passive building energy savings: A review of building envelope components. Renewable Sustainable Energy Rev. 15(8), 36173631 (2011).
48. Fennell H.C. and Haehnel J.: Setting airtightness standards. ASHRAE J. 47(9), 2631 (2005).
49. Dodoo A., Gustavsson L., and Sathre R.: Primary energy implications of ventilation heat recovery in residential buildings. Energy Build. 43(7), 15661572 (2011).
50. Jelle B.P.: Traditional, state-of-the-art and future thermal building insulation materials and solutions—Properties, requirements and possibilities. Energy Build. 43(10), 25492563 (2011).
51. Stec A.A. and Hull T.R.: Assessment of the fire toxicity of building insulation materials. Energy Build. 43(2–3), 498506 (2011).
52. Tyagi V.V. and Buddhi D.: PCM thermal storage in buildings: A state of art. Renewable Sustainable Energy Rev. 11(6), 11461166 (2007).
53. Zinzi M. and Agnoli S.: Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build. 55, 6676 (2012).
54. Liu K. and Baskaran B.: Thermal performance of green roofs through field evaluation. In Proceedings for the First North American Green Roof Infrastructure Conference (Green Roofs for Healthy Cities, Ontario, Canada, 2003); pp. 110.
55. Santamouris M.: Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682703 (2014).
56. Fioretti R., Palla A., Lanza L.G., and Principi P.: Green roof energy and water related performance in the Mediterranean climate. Build. Environ. 45(8), 18901904 (2010).
57. Castleton H.F., Stovin V., Beck S.B.M., and Davison J.B.: Green roofs; building energy savings and the potential for retrofit. Energy Build. 42(10), 15821591 (2010).
58. Sheweka S.M. and Mohamed N.M.: Green facades as a new sustainable approach towards climate change. Energy Procedia 18, 507520 (2012).
59. Pérez G., Rincón L., Vila A., González J.M., and Cabeza L.F.: Behaviour of green facades in Mediterranean continental climate. Energy Convers. Manage. 52(4), 18611867 (2011).
60. Djongyang N., Tchinda R., and Njomo D.: Thermal comfort: A review paper. Renewable Sustainable Energy Rev. 14(9), 26262640 (2010).
61. Yang L., Yan H., and Lam J.C.: Thermal comfort and building energy consumption implications—A review. Appl. Energy 115, 164173 (2014).
62. Kwong Q.J., Adam N.M., and Sahari B.B.: Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: A review. Energy Build. 68(Part A), 547557 (2014).
63. Cheng Y., Niu J., and Gao N.: Thermal comfort models: A review and numerical investigation. Build. Environ. 47, 1322 (2012).
64. Holopainen R., Tuomaala P., Hernandez P., Häkkinen T., Piira K., and Piippo J.: Comfort assessment in the context of sustainable buildings: Comparison of simplified and detailed human thermal sensation methods. Build. Environ. 71, 6070 (2014).
65. Lim S.S., Vos T., Flaxman A.D., Danaei G., Shibuya K., Adair-Rohani H., Amann M., Anderson H.R., Andrews K.G., Aryee M., Atkinson C., Bacchus L.J., Bahalim A.N., Balakrishnan K., Balmes J., Barker-Collo S., Baxter A., Bell M.L., Blore J.D., Blyth F., Bonner C., Borges G., Bourne R., Boussinesq M., Brauer M., Brooks P., Bruce N.G., Brunekreef B., Bryan-Hancock C., Bucello C., Buchbinder R., Bull F., Burnett R.T., Byers T.E., Calabria B., Carapetis J., Carnahan E., Chafe Z., Charlson F., Chen H., Chen J.S., Cheng A.T-A., Child J.C., Cohen A., Colson K.E., Cowie B.C., Darby S., Darling S., Davis A., Degenhardt L., Dentener F., Jarlais Des, D.C., Devries K., Dherani M., Ding E.L., Dorsey E.R., Driscoll T., Edmond K., Ali S.E., Engell R.E., Erwin P.J., Fahimi S., Falder G., Farzadfar F., Ferrari A., Finucane M.M., Flaxman S., Fowkes F.G.R., Freedman G., Freeman M.K., Gakidou E., Ghosh S., Giovannucci E., Gmel G., Graham K., Grainger R., Grant B., Gunnell D., Gutierrez H.R., Hall W., Hoek H.W., Hogan A., Hosgood H.D., Hoy D., Hu H., Hubbell B.J., Hutchings S.J., Ibeanusi S.E., Jacklyn G.L., Jasrasaria R., Jonas J.B., Kan H., Kanis J.A., Kassebaum N., Kawakami N., Khang Y-H., Khatibzadeh S., Khoo J-P., Kok C., Laden F., Lalloo R., Lan Q., Lathlean T., Leasher J.L., Leigh J., Li Y., Lin J.K., Lipshultz S.E., London S., Lozano R., Lu Y., Mak J., Malekzadeh R., Mallinger L., Marcenes W., March L., Marks R., Martin R., McGale P., McGrath J., Mehta S., Mensah G.A., Merriman T.R., Micha R., Michaud C., Mishra V., Mohd Hanafiah K., Mokdad A.A., Morawska L., Mozaffarian D., Murphy T., Naghavi M., Neal B., Nelson P.K., Nolla J.M., Norman R., Olives C., Omer S.B., Orchard J., Osborne R., Ostro B., Page A., Pandey K.D., Parry C.D.H., Passmore E., Patra J., Pearce N., Pelizzari P.M., Petzold M., Phillips M.R., Pope D., Pope C.A., Powles J., Rao M., Razavi H., Rehfuess E.A., Rehm J.T., Ritz B., Rivara F.P., Roberts T., Robinson C., Rodriguez-Portales J.A., Romieu I., Room R., Rosenfeld L.C., Roy A., Rushton L., Salomon J.A., Sampson U., Sanchez-Riera L., Sanman E., Sapkota A., Seedat S., Shi P., Shield K., Shivakoti R., Singh G.M., Sleet D.A., Smith E., Smith K.R., Stapelberg N.J.C., Steenland K., Stöckl H., Stovner L.J., Straif K., Straney L., Thurston G.D., Tran J.H., Van Dingenen R., van Donkelaar A., Veerman J.L., Vijayakumar L., Weintraub R., Weissman M.M., White R.A., Whiteford H., Wiersma S.T., Wilkinson J.D., Williams H.C., Williams W., Wilson N., Woolf A.D., Yip P., Zielinski J.M., Lopez A.D., Murray C.J.L., Ezzati M., AlMazroa M.A., and Memish Z.A.: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet 380(9859), 22242260 (2012).
66. Sundell J.: On the history of indoor air quality and health. Indoor Air 14(Suppl. 7), 5158 (2004).
67. Runeson-Broberg R. and Norbäck D.: Sick building syndrome (SBS) and sick house syndrome (SHS) in relation to psychosocial stress at work in the Swedish workforce. Int. Arch. Occup. Environ. Health 86(8), 915922 (2013).
68. Peng R.D., Butz A.M., Hackstadt A.J., Williams D.L., Diette G.B., Breysse P.N., and Matsui E.C.: Estimating the health benefit of reducing indoor air pollution in a randomized environmental intervention. J. R. Statist. Soc. A 178(2), 425443 (2015).
69. Sundell J., Levin H., Nazaroff W.W., Cain W.S., Fisk W.J., Grimsrud D.T., Gyntelberg F., Li Y., Persily A.K., Pickering A.C., Samet J.M., Spengler J.D., Taylor S.T., and Weschler C.J.: Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 21(3), 191204 (2011).
70. Bornehag C.G., Blomquist G., Gyntelberg F., Järvholm B., Malmberg P., Nordvall L., Nielsen A., Pershagen G., and Sundell J.: Dampness in buildings and health. Nordic interdisciplinary review of the scientific evidence on associations between exposure to “dampness” in buildings and health effects (NORDDAMP). Indoor Air 11(2), 7286 (2001).
71. Wargocki P., Sundell J., Bischof W., Brundrett G., Fanger P.O., Gyntelberg F., Hanssen S.O., Harrison P., Pickering A., Seppänen O., and Wouters P.: Ventilation and health in non-industrial indoor environments: Report from a European Multidisciplinary Scientific Consensus Meeting (EUROVEN). Indoor Air 12(2), 113128 (2002).
72. Maddalena R., Mendell M.J., Eliseeva K., Chan W.R., Sullivan D.P., Russell M., Satish U., and Fisk W.J.: Effects of ventilation rate per person and per floor area on perceived air quality, sick building syndrome symptoms, and decision-making. Indoor Air 25(4), 362370 (2015).
73. Park J.S. and Yoon C.H.: The effects of outdoor air supply rate on work performance during 8-h work period. Indoor Air 21(4), 284290 (2011).
74. Seppänen O., Fisk W.J., and Lei Q.H.: Ventilation and performance in office work. Indoor Air 16(1), 2836 (2006).
75. Haverinen-Shaughnessy U., Moschandreas D.J., and Shaughnessy R.J.: Association between substandard classroom ventilation rates and students’ academic achievement. Indoor Air 21(2), 121131 (2011).
76. Lu T., X., and Viljanen M.: A novel and dynamic demand-controlled ventilation strategy for CO2 control and energy saving in buildings. Energy Build. 43(9), 24992508 (2011).
77. Koebel M., Rigacci A., and Achard P.: Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 63(3), 315339 (2012).
78. Freedonia Market Study #2434: World Insulation (Freedonia, Cleveland, 2009).
79. Hale R.C., La Guardia M.J., Harvey E., and Mainor T.M.: Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere 46(5), 729735 (2002).
80. Blanco F., García P., Mateos P., and Ayala J.: Characteristics and properties of lightweight concrete manufactured with cenospheres. Cem. Concr. Res. 30(11), 17151722 (2000).
81. Baetens R., Jelle B.P., Gustavsen A., and Grynning S.: Gas-filled panels for building applications: A state-of-the-art review. Energy Build. 42(11), 19691975 (2010).
82. Lux Research Market Study #17198: Mapping Advanced Insulation Materials to Markets: Assessing Aerogel, Vacuum Insulation Panel, and Phase-Change Material Opportunities Beyond Building Applications (2015).
83. Kwon J-S., Jang C.H., Jung H., and Song T-H.: Effective thermal conductivity of various filling materials for vacuum insulation panels. Int. J. Heat Mass Transfer 52(23), 55255532 (2009).
84. Simmler H. and Brunner S.: Vacuum insulation panels for building application: Basic properties, aging mechanisms and service life. Energy Build. 37(11), 11221131 (2005).
85. Stahl T., Brunner S., Zimmermann M., and Koebel M.: Thermally insulating aerogel based rendering materials. Patent WO 2014090790 A1, 2014.
86. Fickler S., Milow B., Ratke L., Schnellenbach-Held M., and Welsch T.: Development of high performance aerogel concrete. Energy Procedia 78, 406411 (2015).
87. Rezaei S.D., Shannigrahi S., and Ramakrishna S.: A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Sol. Energy Mater. Sol. Cells 159, 2651 (2017).
88. Manz H.: On minimizing heat transport in architectural glazing. Renew. Energy 33(1), 119128 (2008).
89. Jelle B.P., Kalnæs S.E., and Gao T.: Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives. Energy Build. 96, 329356 (2015).
90. Van Den Bergh S., Hart R., Jelle B.P., and Gustavsen A.: Window spacers and edge seals in insulating glass units: A state-of-the-art review and future perspectives. Energy Build. 58, 263280 (2013).
91. Jelle B.P., Hynd A., Gustavsen A., Arasteh D., Goudey H., and Hart R.: Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Sol. Energy Mater. Sol. Cells 96, 128 (2012).
92. Gustavsen A., Grynning S., Arasteh D., Jelle B.P., and Goudey H.: Key elements of and material performance targets for highly insulating window frames. Energy Build. 43(10), 25832594 (2011).
93. Thalfeldt M., Pikas E., Kurnitski J., and Voll H.: Facade design principles for nearly zero energy buildings in a cold climate. Energy Build. 67, 309321 (2013).
94. Hood T.G., Vincent S.M., and Booth R.: High performance, thermally insulating multipane glazing structure. U.S. Patent No. 5156894 A, 1992.
95. Collins R.E. and Simko T.M.: Current status of the science and technology of vacuum glazing. Sol. Energy 62(3), 189213 (1998).
96. Simko T. and Collins R.E.: Vacuum glazing: Development, design challenges and commercialisation. Aust. J. Mech. Eng. 12(3), 305316 (2014).
97. Cuce E. and Cuce P.M.: Vacuum glazing for highly insulating windows: Recent developments and future prospects. Renewable Sustainable Energy Rev. 54, 13451357 (2016).
98. Buratti C. and Moretti E.: Experimental performance evaluation of aerogel glazing systems. In Energy Solutions for a Sustainable World—Proceedings of the Third International Conference on Applied Energy, May 16–18, 2011-Perugia, Italy, Vol. 97 (2012); pp. 430437.
99. Schultz J.M., Jensen K.I., and Kristiansen F.H.: Super insulating aerogel glazing. Sol. Energy Mater. Sol. Cells 89(2–3), 275285 (2005).
100. Jensen K.I., Schultz J.M., and Kristiansen F.H.: Development of windows based on highly insulating aerogel glazings. In Aerogels 7. Proceedings of the 7th International Symposium on Aerogels 7th International Symposium on Aerogels, Vol. 350 (Alexandria, VA, 2004); pp. 351357.
101. Reim M., Körner W., Manara J., Korder S., Arduini-Schuster M., Ebert H-P., and Fricke J.: Silica aerogel granulate material for thermal insulation and daylighting. CISBAT’03: Innovation in Building Envelopes and Environmental Systems 79(2), 131139 (2005).
102. Raut H.K., Ganesh V.A., Nair A.S., and Ramakrishna S.: Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 4(10), 37793804 (2011).
103. Fernandes L.L., Lee E.S., McNeil A., Jonsson J.C., Nouidui T., Pang X., and Hoffmann S.: Angular selective window systems: Assessment of technical potential for energy savings. Energy Build. 90, 188206 (2015).
104. Gong J., Kostro A., Motamed A., and Schueler A.: Potential advantages of a multifunctional complex fenestration system with embedded micro-mirrors in daylighting. Sol. Energy 139, 412425 (2016).
105. Georg A., Georg A., Graf W., and Wittwer V.: Switchable windows with tungsten oxide. Vacuum 82(7), 730735 (2008).
106. Granqvist C.G.: Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 60(3), 201262 (2000).
107. Wittwer V., Datz M., Ell J., Georg A., Graf W., and Walze G.: Gasochromic windows. Sol. Energy Mater. Sol. Cells 84(1), 305314 (2004).
108. Hauch A., Georg A., Baumgärtner S., Krašovec U.O., and Orel B.: New photoelectrochromic device. Electrochim. Acta 46(13), 21312136 (2001).
109. Parkin I.P. and Manning T.D.: Intelligent thermochromic windows. J. Chem. Educ. 83(3), 393 (2006).
110. Livage J. and Ganguli D.: Sol–gel electrochromic coatings and devices: A review. Sol. Energy Mater. Sol. Cells 68(3), 365381 (2001).
111. Lee S., Deshpande R., Parilla P.A., Jones K.M., To B., Mahan A.H., and Dillon A.C.: Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18(6), 763766 (2006).
112. Scherer M.R., Li L., Cunha P., Scherman O.A., and Steiner U.: Enhanced electrochromism in gyroid-structured vanadium pentoxide. Adv. Mater. 24(9), 12171221 (2012).
113. Sialvi M.Z., Mortimer R.J., Wilcox G.D., Teridi A.M., Varley T.S., Wijayantha K.U., and Kirk C.A.: Electrochromic and colorimetric properties of nickel(II) oxide thin films prepared by aerosol-assisted chemical vapor deposition. ACS Appl. Mater. Interfaces 5(12), 56755682 (2013).
114. Thakur V.K., Ding G., Ma J., Lee P.S., and Lu X.: Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 24(30), 40714096 (2012).
115. Marcilla R., Alcaide F., Sardon H., Pomposo J.A., Pozo-Gonzalo C., and Mecerreyes D.: Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem. Commun. 8(3), 482488 (2006).
116. Runnerstrom E.L., Llordés A., Lounis S.D., and Milliron D.J.: Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50(73), 1055510572 (2014).
117. Stopper J., Boeing F., and Gstoehl D.: Fluid Glass Façade Elements: Energy Balance of an Office Space with a Fluid Glass Façade (Munich, Germany, 2013).
118. Pimputkar S., Speck J.S., DenBaars S.P., and Nakamura S.: Prospects for LED lighting. Nat. Photonics 3(4), 180 (2009).
119. Krames M.R., Shchekin O.B., Mueller-Mach R., Mueller G.O., Zhou L., Harbers G., and Craford M.G.: Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3(2), 160175 (2007).
120. US Energy Information Administration: Trends in Lighting in Commercial Buildings (US EIA, Washington, 2017).
121. Kumar R. and Rosen M.A.: A critical review of photovoltaic–Thermal solar collectors for air heating. Appl. Energy 88(11), 36033614 (2011).
122. Tian Y. and Zhao C-Y.: A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538553 (2013).
123. Kennedy C.E.: Review of Mid-to High-Temperature Solar Selective Absorber Materials, Vol. 1617 (National Renewable Energy Laboratory, Golden, CO, USA, 2002).
124. Zambolin E. and Del Col D.: Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84(8), 13821396 (2010).
125. Sanner B., Karytsas C., Mendrinos D., and Rybach L.: Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 32(4), 579588 (2003).
126. Trillat-Berdal V., Souyri B., and Fraisse G.: Experimental study of a ground-coupled heat pump combined with thermal solar collectors. Energy Build. 38(12), 14771484 (2006).
127. Green M.A., Emery K., Hishikawa Y., Warta W., and Dunlop E.D.: Solar cell efficiency tables (Version 45). Prog. Photovoltaics 23(1), 19 (2015).
128. Omer S., Wilson R., and Riffat S.: Monitoring results of two examples of building integrated PV (BIPV) systems in the UK. Renew. Energy 28(9), 13871399 (2003).
129. Yang H., Zheng G., Lou C., An D., and Burnett J.: Grid-connected building-integrated photovoltaics: A Hong Kong case study. Sol. Energy 76(1), 5559 (2004).
130. Heinstein P., Ballif C., and Perret-Aebi L-E.: Building integrated photovoltaics (BIPV): Review, potentials, barriers and myths. Green 3(2), 125156 (2013).
131. Petter Jelle B., Breivik C., and Drolsum Røkenes H.: Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Sol. Energy Mater. Sol. Cells 100, 6996 (2012).
132. Shukla A.K., Sudhakar K., and Baredar P.: A comprehensive review on design of building integrated photovoltaic system. Energy Build. 128, 99110 (2016).
133. Redweik P., Catita C., and Brito M.: Solar energy potential on roofs and facades in an urban landscape. Sol. Energy 97, 332341 (2013).
134. Tsoutsos T., Farmaki E., and Mandalaki M.: Solar energy for building supply. In Energy Performance of Buildings (2016); pp. 377398.
135. Lottner V. and Mangold D.: Status of seasonal thermal energy storage in Germany. Proc. Terrastock, 18 (University of Stuttgart, Stuttgart, Germany, 2000).
136. Stene J.: Large-Scale Ground-Source Heat Pump Systems in Norway (IEA Annex 29 Workshop, Paris, France, 2008).
137. Hellström G.: Large-Scale Applications of Ground-Source Heat Pumps in Sweden (IEA Heat Pump Annex 29 Workshop, Zurich, 2008).
138. Zalba B., Marín J.M., Cabeza L.F., and Mehling H.: Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251283 (2003).
139. Kaufmann J. and Winnefeld F.: Cement-based chemical energy stores. Patent WO2011147748 A1, 2011.
140. Dicaire D. and Tezel F.H.: Regeneration and efficiency characterization of hybrid adsorbent for thermal energy storage of excess and solar heat. Renew. Energy 36(3), 986992 (2011).
141. Hongois S., Kuznik F., Stevens P., and Roux J-J.: Development and characterisation of a new MgSO4–zeolite composite for long-term thermal energy storage. Sol. Energy Mater. Sol. Cells 95(7), 18311837 (2011).
142. Fumey B., Weber R., Gantenbein P., Daguenet-Frick X., Williamson T., and Dorer V.: Closed sorption heat storage based on aqueous sodium hydroxide. Energy Procedia 48, 337346 (2014).
143. Mette B., Kerskes H., and Drück H.: Concepts of long-term thermochemical energy storage for solar thermal applications—Selected examples. Energy Procedia 30, 321330 (2012).
144. Khudhair A.M. and Farid M.M.: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manage. 45(2), 263275 (2004).
145. Zhou D., Zhao C-Y., and Tian Y.: Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 92, 593605 (2012).
146. Jamekhorshid A., Sadrameli S., and Farid M.: A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable Sustainable Energy Rev. 31, 531542 (2014).
147. Florides G. and Kalogirou S.: Ground heat exchangers—A review of systems, models and applications. Renew. Energy 32(15), 24612478 (2007).
148. Yang H., Cui P., and Fang Z.: Vertical-borehole ground-coupled heat pumps: A review of models and systems. Appl. Energy 87(1), 1627 (2010).
149. Wang C., Chang Y., Zhang L., Pang M., and Hao Y.: A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China. Energy 120, 374384 (2017).
150. Kasurinen S., Jalava P.I., Tapanainen M., Uski O., Happo M.S., Mäki-Paakkanen J., Lamberg H., Koponen H., Nuutinen I., Kortelainen M., Jokiniemi J., and Hirvonen M-R.: Toxicological effects of particulate emissions—A comparison of oil and wood fuels in small- and medium-scale heating systems. Atmos. Environ. 103, 321330 (2015).
151. Sippula O., Hokkinen J., Puustinen H., Yli-Pirilä P., and Jokiniemi J.: Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmos. Environ. 43(32), 48554864 (2009).
152. Zambrana-Vasquez D., Aranda-Usón A., Zabalza-Bribián I., Jañez A., Llera-Sastresa E., Hernandez P., and Arrizabalaga E.: Environmental assessment of domestic solar hot water systems: A case study in residential and hotel buildings. J. Cleaner Prod. 88, 2942 (2015).
153. Forman C., Muritala I.K., Pardemann R., and Meyer B.: Estimating the global waste heat potential. Renewable Sustainable Energy Rev. 57, 15681579 (2016).
154. Eichholz H.D. and Schulz S.: Practical recognized facts from a glass laboratory absorption heatpump for methyl-alcohol working fluid mixtures. Kälte und Klimatechnik 35, 378 (1982).
155. Jernqvist Å., Abrahamsson K., and Aly G.: On the efficiencies of absorption heat transformers. Heat Recovery Syst. CHP 12(4), 323334 (1992).
156. Ziegler F.: Recent developments and future prospects of sorption heat pump systems. Int. J. Therm. Sci. 38(3), 191208 (1999).
157. Shelton S.V.: Resedential space conditioning with solid sorption technology. Heat Recovery Syst. CHP 13(4), 353361 (1993).
158. Meunier F.: Solid sorption heat powered cycles for cooling and heat pumping applications. Appl. Therm. Eng. 18(9), 715729 (1998).
159. Henninger S., Schmidt F., and Henning H-M.: Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30(13), 16921702 (2010).
160. Dell R.M. and Rand D.A.J.: Energy storage—A key technology for global energy sustainability. J. Power Sources 100(1), 217 (2001).
161. Luthander R., Widén J., Nilsson D., and Palm J.: Photovoltaic self-consumption in buildings: A review. Appl. Energy 142, 8094 (2015).
162. Deane J.P., Gallachóir B.Ó., and McKeogh E.: Techno-economic review of existing and new pumped hydro energy storage plant. Renewable Sustainable Energy Rev. 14(4), 12931302 (2010).
163. Lund H. and Salgi G.: The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers. Manage. 50(5), 11721179 (2009).
164. Cheung B., Carriveau R., and Ting D.S.: Storing energy underwater. Mech. Eng. 134(12), 38 (2012).
165. Divya K. and Østergaard J.: Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 79(4), 511520 (2009).
166. Dufo-López R., Lujano-Rojas J.M., and Bernal-Agustín J.L.: Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems. Appl. Energy 115, 242253 (2014).
167. Nykvist B. and Nilsson M.: Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5(4), 329332 (2015).
168. Kim H., Boysen D.A., Newhouse J.M., Spatocco B.L., Chung B., Burke P.J., Bradwell D.J., Jiang K., Tomaszowska A.A., and Wang K.: Liquid metal batteries: Past, present, and future. Chem. Rev. 113(3), 20752099 (2012).
169. Kear G., Shah A.A., and Walsh F.C.: Development of the all-vanadium redox flow battery for energy storage: A review of technological, financial and policy aspects. Int. J. Energy Res. 36(11), 11051120 (2012).
170. Wang W., Luo Q., Li B., Wei X., Li L., and Yang Z.: Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23(8), 970986 (2013).
171. Khaligh A. and Li Z.: Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Trans. Veh. Technol. 59(6), 28062814 (2010).
172. Dounis A.I. and Caraiscos C.: Advanced control systems engineering for energy and comfort management in a building environment—A review. Renewable Sustainable Energy Rev. 13(6–7), 12461261 (2009).
173. Ikeda S. and Ooka R.: Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system. Appl. Energy 151, 192205 (2015).
174. Chan M., Estève D., Escriba C., and Campo E.: A review of smart homes—Present state and future challenges. Comput. Meth. Prog. Bio. 91(1), 5581 (2008).
175. Dorer V. and Weber A.: Energy and CO2 emissions performance assessment of residential micro-cogeneration systems with dynamic whole-building simulation programs. Energy Convers. Manage. 50(3), 648657 (2009).
176. Široký J., Oldewurtel F., Cigler J., and Prívara S.: Experimental analysis of model predictive control for an energy efficient building heating system. Appl. Energy 88(9), 30793087 (2011).
177. Fong K.F., Hanby V.I., and Chow T.T.: HVAC system optimization for energy management by evolutionary programming. Energy Build. 38(3), 220231 (2006).
178. Attia S., Hamdy M., O’Brien W., and Carlucci S.: Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy Build. 60, 110124 (2013).
179. Magnier L. and Haghighat F.: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network. Build. Environ. 45(3), 739746 (2010).
180. Wang J., Zhai Z.J., Jing Y., and Zhang C.: Particle swarm optimization for redundant building cooling heating and power system. Appl. Energy 87(12), 36683679 (2010).
181. Oldewurtel F., Parisio A., Jones C.N., Gyalistras D., Gwerder M., Stauch V., Lehmann B., and Morari M.: Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 45, 1527 (2012).
182. Missaoui R., Joumaa H., Ploix S., and Bacha S.: Managing energy smart homes according to energy prices: Analysis of a building energy management system. Energy Build. 71, 155167 (2014).
183. Tsui K.M. and Chan S.C.: Demand response optimization for smart home scheduling under real-time pricing. IEEE Trans. Smart Grid 3(4), 18121821 (2012).
184. Orehounig K., Evins R., and Dorer V.: Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Appl. Energy 154, 277289 (2015).
185. Lauster M., Teichmann J., Fuchs M., Streblow R., and Mueller D.: Low order thermal network models for dynamic simulations of buildings on city district scale. Build. Environ. 73, 223231 (2014).
186. Siano P.: Demand response and smart grids—A survey. Renewable Sustainable Energy Rev. 30, 461478 (2014).
187. Pacheco R., Ordóñez J., and Martínez G.: Energy efficient design of building: A review. Renewable Sustainable Energy Rev. 16(6), 35593573 (2012).
188. Rodriguez-Ubinas E., Montero C., Porteros M., Vega S., Navarro I., Castillo-Cagigal M., Matallanas E., and Gutiérrez A.: Passive design strategies and performance of net energy plus houses. Energy Build. 83, 1022 (2014).
189. Copiello S.: Economic implications of the energy issue: Evidence for a positive non-linear relation between embodied energy and construction cost. Energy Build. 123, 5970 (2016).
190. Greening L.A., Greene D.L., and Difiglio C.: Energy efficiency and consumption—The rebound effect—A survey. Energy Policy 28(6–7), 389401 (2000).
191. Sorrell S., Dimitropoulos J., and Sommerville M.: Empirical estimates of the direct rebound effect: A review. Energy Policy 37(4), 13561371 (2009).
192. Böninger M.: Wie viel Wohnraum braucht der Mensch?—Stadt Zürich (2013). Available at: (accessed December 5, 2016).
193. Wie private Haushalte die Umwelt nutzen—Höherer Energieverbrauch trotz Effizienzsteigerungen (Umwelt Bundesamt, 2006). Available at: (accessed December 5, 2016).
194. Galvin R.: Making the “rebound effect” more useful for performance evaluation of thermal retrofits of existing homes: Defining the “energy savings deficit” and the “energy performance gap”. Energy Build. 69, 515524 (2014).
195. Kerr R. and Toy D.: Final Report: Occupied Home Evaluation Results (Building Industry Research Alliance (BIRA), Stockton, CA, 2007). Available at: (accessed December 5, 2016).
196. Janda K.B.: Buildings don’t use energy: People do. Archit. Sci. Rev. 54(1), 1522 (2011).
197. Stevenson F. and Leaman A.: Evaluating housing performance in relation to human behaviour: New challenges. Build. Res. Inf. 38(5), 437441 (2010).
198. Energieplanungsbericht 2013 (AWEL, Abteilung Energie, Zürich, 2013). Available at: (accessed October 18, 2017).
199. Ma Z., Cooper P., Daly D., and Ledo L.: Existing building retrofits: Methodology and state-of-the-art. Energy Build. 55, 889902 (2012).
200. Kumbaroğlu G. and Madlener R.: Evaluation of economically optimal retrofit investment options for energy savings in buildings. Energy Build. 49, 327334 (2012).
201. Asadi E., da Silva M.G., Antunes C.H., Dias L., and Glicksman L.: Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy Build. 81, 444456 (2014).
202. Girod B., Lang T., and Nägele F.: Energieeffizienz in Gebäuden: Herausforderungen und Chancen für Energieversorger und Technologiehersteller (2014). Available at: (accessed December 5, 2016).
203. Achtnicht M. and Madlener R.: Factors influencing German house owners’ preferences on energy retrofits. Energy Policy 68, 254263 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Energy & Sustainability
  • ISSN: 2329-2229
  • EISSN: 2329-2237
  • URL: /core/journals/mrs-energy-and-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 58
Total number of PDF views: 221 *
Loading metrics...

Abstract views

Total abstract views: 502 *
Loading metrics...

* Views captured on Cambridge Core between 30th October 2017 - 23rd January 2018. This data will be updated every 24 hours.