Skip to main content
×
×
Home

Generalized friezes and a modified Caldero–Chapoton map depending on a rigid object

  • Thorsten Holm (a1) and Peter Jørgensen (a2)
Abstract

The (usual) Caldero–Chapoton map is a map from the set of objects of a category to a Laurent polynomial ring over the integers. In the case of a cluster category, it maps reachable indecomposable objects to the corresponding cluster variables in a cluster algebra. This formalizes the idea that the cluster category is a categorification of the cluster algebra. The definition of the Caldero–Chapoton map requires the category to be 2-Calabi-Yau, and the map depends on a cluster-tilting object in the category. We study a modified version of the Caldero–Chapoton map which requires only that the category have a Serre functor and depends only on a rigid object in the category. It is well known that the usual Caldero–Chapoton map gives rise to so-called friezes, for instance, Conway–Coxeter friezes. We show that the modified Caldero–Chapoton map gives rise to what we call generalized friezes and that, for cluster categories of Dynkin type A, it recovers the generalized friezes introduced by combinatorial means in recent work by the authors and Bessenrodt.

Copyright
References
Hide All
[1] Assem, I. and Dupont, G., Friezes and a construction of the Euclidean cluster variables, J. Pure Appl. Algebra 215 (2011), 23222340. MR 2793939. DOI 10.1016/j.jpaa.2010.12.013.
[2] Auslander, M., “Representation dimension of Artin algebras,” reprint of the 1971 original, in Selected Works of Maurice Auslander, Vol. 1 , Amer. Math. Soc., Providence, 1999, 505574.
[3] Auslander, M., Representation theory of Artin algebras, I, Comm. Algebra 1 (1974), 177268. MR 0349747.
[4] Auslander, M., Representation theory of Artin algebras, II, Comm. Algebra 1 (1974), 269310. MR 0349747.
[5] Auslander, M. and Reiten, I., Stable equivalence of dualizing R-varieties, Adv. Math. 12 (1974), 306366. MR 0342505.
[6] Bessenrodt, C., Holm, T., and Jørgensen, P., Generalized frieze pattern determinants and higher angulations of polygons, J. Combin. Theory Ser. A 123 (2014), 3042. MR 3157797. DOI 10.1016/j.jcta.2013.11.003.
[7] Broline, D., Crowe, D. W., and Isaacs, I. M., The geometry of frieze patterns, Geom. Dedicata 3 (1974), 171176. MR 0363955.
[8] Buan, A. B., Marsh, R., Reineke, M., Reiten, I., and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572618. MR 2249625. DOI 10.1016/j.aim.2005.06.003.
[9] Caldero, P. and Chapoton, F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595616. MR 2250855. DOI 10.4171/CMH/65.
[10] Caldero, P., Chapoton, F., and Schiffler, R., Quivers with relations arising from clusters (An case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 13471364. MR 2187656. DOI 10.1090/S0002-9947-05-03753-0.
[11] Caldero, P. and Keller, B., From triangulated categories to cluster algebras, I, Invent. Math. 172 (2008), 169211. MR 2385670. DOI 10.1007/s00222-008-0111-4.
[12] Caldero, P. and Keller, B., From triangulated categories to cluster algebras, II, Ann. Sci. Ec. Norm. Super. (4) 39 (2006), 9831009. MR 2316979. DOI 10.1016/j.ansens.2006.09.003.
[13] Conway, J. H. and Coxeter, H. S. M., Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 8794. MR 0461269.
[14] Conway, J. H. and Coxeter, H. S. M., Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 175183. MR 0461270.
[15] Domínguez, S. and Geiss, C., A Caldero–Chapoton formula for generalized cluster categories, J. Algebra 399 (2014), 887893. MR 3144617. DOI 10.1016/j.jalgebra.2013.10.018.
[16] Fomin, S. and Zelevinsky, A., Cluster algebras, I: Foundations, J. Amer. Math. Soc. 15 (2002), 497529. MR 1887642. DOI 10.1090/S0894-0347-01-00385-X.
[17] Fulton, W., Introduction to Toric Varieties, Ann. of Math. Stud. 131, Princeton University Press, Princeton, 1993. MR 1234037.
[18] Holm, T. and Jørgensen, P., Generalised friezes and a modified Caldero–Chapoton map depending on a rigid object, II, preprint, arXiv: 1401.4616v1 [math.RT]
[19] Iyama, O. and Yoshino, Y., Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), 117168. MR 2385669. DOI 10.1007/s00222-007-0096-4.
[20] Jørgensen, P. and Palu, Y., A Caldero–Chapoton map for infinite clusters, Trans. Amer. Math. Soc. 365 (2013), no. 3, 11251147. MR 3003260. DOI 10.1090/S0002-9947-2012-05464-X.
[21] Palu, Y., Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 58 (2008), 22212248. MR 2473635.
[22] Palu, Y., Cluster characters, II: A multiplication formula, Proc. Lond. Math. Soc. (3) 104 (2012), 5778. MR 2876964. DOI 10.1112/plms/pdr027.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 114 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 15th August 2018. This data will be updated every 24 hours.