Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-13T14:02:47.976Z Has data issue: false hasContentIssue false

Generalized friezes and a modified Caldero–Chapoton map depending on a rigid object

Published online by Cambridge University Press:  11 January 2016

Thorsten Holm
Affiliation:
Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Leibniz Universität Hannover, 30167 Hannover, Germany, holm@math.uni-hannover.dehttp://www.iazd.uni-hannover.de/~tholm
Peter Jørgensen
Affiliation:
School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom, peter.jorgensen@ncl.ac.ukhttp://www.staff.ncl.ac.uk/peter.jorgensen
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The (usual) Caldero–Chapoton map is a map from the set of objects of a category to a Laurent polynomial ring over the integers. In the case of a cluster category, it maps reachable indecomposable objects to the corresponding cluster variables in a cluster algebra. This formalizes the idea that the cluster category is a categorification of the cluster algebra. The definition of the Caldero–Chapoton map requires the category to be 2-Calabi-Yau, and the map depends on a cluster-tilting object in the category. We study a modified version of the Caldero–Chapoton map which requires only that the category have a Serre functor and depends only on a rigid object in the category. It is well known that the usual Caldero–Chapoton map gives rise to so-called friezes, for instance, Conway–Coxeter friezes. We show that the modified Caldero–Chapoton map gives rise to what we call generalized friezes and that, for cluster categories of Dynkin type A, it recovers the generalized friezes introduced by combinatorial means in recent work by the authors and Bessenrodt.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2015

References

[1] Assem, I. and Dupont, G., Friezes and a construction of the Euclidean cluster variables, J. Pure Appl. Algebra 215 (2011), 23222340. MR 2793939. DOI 10.1016/j.jpaa.2010.12.013.Google Scholar
[2] Auslander, M., “Representation dimension of Artin algebras,” reprint of the 1971 original, in Selected Works of Maurice Auslander, Vol. 1 , Amer. Math. Soc., Providence, 1999, 505574.Google Scholar
[3] Auslander, M., Representation theory of Artin algebras, I, Comm. Algebra 1 (1974), 177268. MR 0349747.Google Scholar
[4] Auslander, M., Representation theory of Artin algebras, II, Comm. Algebra 1 (1974), 269310. MR 0349747. Google Scholar
[5] Auslander, M. and Reiten, I., Stable equivalence of dualizing R-varieties, Adv. Math. 12 (1974), 306366. MR 0342505.CrossRefGoogle Scholar
[6] Bessenrodt, C., Holm, T., and Jørgensen, P., Generalized frieze pattern determinants and higher angulations of polygons, J. Combin. Theory Ser. A 123 (2014), 3042. MR 3157797. DOI 10.1016/j.jcta.2013.11.003.Google Scholar
[7] Broline, D., Crowe, D. W., and Isaacs, I. M., The geometry of frieze patterns, Geom. Dedicata 3 (1974), 171176. MR 0363955.CrossRefGoogle Scholar
[8] Buan, A. B., Marsh, R., Reineke, M., Reiten, I., and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572618. MR 2249625. DOI 10.1016/j.aim.2005.06.003.Google Scholar
[9] Caldero, P. and Chapoton, F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595616. MR 2250855. DOI 10.4171/CMH/65.Google Scholar
[10] Caldero, P., Chapoton, F., and Schiffler, R., Quivers with relations arising from clusters (An case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 13471364. MR 2187656. DOI 10.1090/S0002-9947-05-03753-0.Google Scholar
[11] Caldero, P. and Keller, B., From triangulated categories to cluster algebras, I, Invent. Math. 172 (2008), 169211. MR 2385670. DOI 10.1007/s00222-008-0111-4.Google Scholar
[12] Caldero, P. and Keller, B., From triangulated categories to cluster algebras, II, Ann. Sci. Ec. Norm. Super. (4) 39 (2006), 9831009. MR 2316979. DOI 10.1016/j.ansens.2006.09.003.Google Scholar
[13] Conway, J. H. and Coxeter, H. S. M., Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 8794. MR 0461269.Google Scholar
[14] Conway, J. H. and Coxeter, H. S. M., Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 175183. MR 0461270.Google Scholar
[15] Domínguez, S. and Geiss, C., A Caldero–Chapoton formula for generalized cluster categories, J. Algebra 399 (2014), 887893. MR 3144617. DOI 10.1016/j.jalgebra.2013.10.018.Google Scholar
[16] Fomin, S. and Zelevinsky, A., Cluster algebras, I: Foundations, J. Amer. Math. Soc. 15 (2002), 497529. MR 1887642. DOI 10.1090/S0894-0347-01-00385-X.Google Scholar
[17] Fulton, W., Introduction to Toric Varieties, Ann. of Math. Stud. 131, Princeton University Press, Princeton, 1993. MR 1234037.Google Scholar
[18] Holm, T. and Jørgensen, P., Generalised friezes and a modified Caldero–Chapoton map depending on a rigid object, II, preprint, arXiv: 1401.4616v1 [math.RT]Google Scholar
[19] Iyama, O. and Yoshino, Y., Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), 117168. MR 2385669. DOI 10.1007/s00222-007-0096-4.Google Scholar
[20] Jørgensen, P. and Palu, Y., A Caldero–Chapoton map for infinite clusters, Trans. Amer. Math. Soc. 365 (2013), no. 3, 11251147. MR 3003260. DOI 10.1090/S0002-9947-2012-05464-X.CrossRefGoogle Scholar
[21] Palu, Y., Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 58 (2008), 22212248. MR 2473635.Google Scholar
[22] Palu, Y., Cluster characters, II: A multiplication formula, Proc. Lond. Math. Soc. (3) 104 (2012), 5778. MR 2876964. DOI 10.1112/plms/pdr027.Google Scholar