Skip to main content Accessibility help
×
×
Home

HERZ–MORREY SPACES ON THE UNIT BALL WITH VARIABLE EXPONENT APPROACHING $1$ AND DOUBLE PHASE FUNCTIONALS

  • YOSHIHIRO MIZUTA (a1), TAKAO OHNO (a2) and TETSU SHIMOMURA (a3)

Abstract

Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$ , where $a(x)^{1/p_{2}}$ is nonnegative, bounded and Hölder continuous of order $\unicode[STIX]{x1D703}\in (0,1]$ and $1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$ . We also establish Sobolev type inequality for Riesz potentials on the unit ball.

Copyright

References

Hide All
[1] Adams, D. R. and Xiao, J., Morrey spaces in harmonic analysis , Ark. Mat. 50(2) (2012), 201230.
[2] Almeida, A. and Drihem, D., Maximal, potential and singular type operators on Herz spaces with variable exponents , J. Math. Anal. Appl. 394(2) (2012), 781795.
[3] Baroni, P., Colombo, M. and Mingione, G., Non-autonomous functionals, borderline cases and related function classes , St Petersburg Math. J. 27 (2016), 347379.
[4] Burenkov, V. I., Gogatishvili, A., Guliyev, V. S. and Mustafayev, R. Ch., Boundedness of the fractional maximal operator in local Morrey-type spaces , Complex Var. Elliptic Equ. 55(8–10) (2010), 739758.
[5] Burenkov, V. I., Gogatishvili, A., Guliyev, V. S. and Mustafayev, R. Ch., Boundedness of the Riesz potential in local Morrey-type spaces , Potential Anal. 35(1) (2011), 6787.
[6] Burenkov, V. I. and Guliyev, H. V., Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces , Stud. Math. 163(2) (2004), 157176.
[7] Colasuonno, F. and Squassina, M., Eigenvalues for double phase variational integrals , Ann. Mat. Pura Appl. (4) 195(6) (2016), 19171959.
[8] Cruz-Uribe, D., Fiorenza, A. and Neugebauer, C. J., The maximal function on variable L p spaces , Ann. Acad. Sci. Fenn. Ser. Math. 28 (2003), 223238; 29 (2004), 247–249.
[9] Colombo, M. and Mingione, G., Regularity for double phase variational problems , Arch. Ration. Mech. Anal. 215 (2015), 443496.
[10] Diening, L., Harjulehto, P., Hästö, P. and Růžička, M., Lebesgue and Sobolev spaces With Variable Exponents, Lecture Notes in Mathematics 2017 , Springer, Heidelberg, 2011.
[11] Esposito, L., Leonetti, F. and Mingione, G., Sharp regularity for functionals with (p, q) growth , J. Differential Equations 204(1) (2004), 555.
[12] Fonseca, I., Malý, J. and Mingione, G., Scalar minimizers with fractal singular sets , Arch. Ration. Mech. Anal. 172(2) (2004), 295307.
[13] Futamura, T. and Mizuta, Y., Maximal functions for Lebesgue spaces with variable exponent approaching 1 , Hiroshima Math. J. 36(1) (2006), 2328.
[14] Guliyev, V. S., Hasanov, J. J. and Samko, S. G., Maximal, potential and singular operators in the local “complementary” variable exponent Morrey type spaces , J. Math. Anal. Appl. 401(1) (2013), 7284.
[15] Guliyev, V. S., Hasanov, S. G. and Sawano, Y., Decompositions of local Morrey-type spaces , Positivity 21(1) (2017), 12231252.
[16] Harjulehto, P., Hästö, P. and Karppinen, A., Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions , Nonlinear Anal. 177 (2018), 543552.
[17] Hästö, P., The maximal operator in Lebesgue spaces with variable exponent near 1 , Math. Nachr. 280(1–2) (2007), 7482.
[18] Hästö, P., The maximal operator on generalized Orlicz spaces , J. Funct. Anal. 269(12) (2015), 40384048; Corrigendum to The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 271(1) (2016), 240–243.
[19] Kováčik, O. and Rákosník, J., On spaces L p (x) and W k, p (x) , Czechoslovak Math. J. 41 (1991), 592618.
[20] Maeda, F. Y., Mizuta, Y. and Shimomura, T., Variable exponent weighted norm inequality for generalized Riesz potentials on the unit ball , Collect. Math. 69 (2018), 377394.
[21] Mizuta, Y. and Ohno, T., Sobolev’s theorem and duality for Herz–Morrey spaces of variable exponent , Ann. Acad. Sci. Fenn. Math. 39 (2014), 389416.
[22] Mizuta, Y. and Ohno, T., Herz–Morrey spaces of variable exponent, Riesz potential operator and duality , Complex Var. Elliptic Equ. 60(2) (2015), 211240.
[23] Mizuta, Y., Ohno, T. and Shimomura, T., Integrability of maximal functions for generalized Lebesgue spaces with variable exponent , Math. Nachr. 281 (2008), 386395.
[24] Mizuta, Y., Ohno, T. and Shimomura, T., “ Integrability of maximal functions for generalized Lebesgue spaces L p (⋅)(logL) q (⋅) ”, in Potential Theory and Stochastics in Albac, Theta Series in Advanced Mathematics 11 , Theta, Bucharest, 2009, 193202.
[25] Mizuta, Y. and Shimomura, T., Differentiability and Hölder continuity of Riesz potentials of Orlicz functions , Analysis (Munich) 20(3) (2000), 201223.
[26] Samko, S., Variable exponent Herz spaces , Mediterr. J. Math. 10(4) (2013), 20072025.
[27] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed