Skip to main content
×
×
Home

NEARLY MORITA EQUIVALENCES AND RIGID OBJECTS

  • ROBERT J. MARSH (a1) and YANN PALU (a2)
Abstract

If $T$ and $T^{\prime }$ are two cluster-tilting objects of an acyclic cluster category related by a mutation, their endomorphism algebras are nearly Morita equivalent (Buan et al., Cluster-tilted algebras, Trans. Amer. Math. Soc. 359(1) (2007), 323–332 (electronic)); that is, their module categories are equivalent “up to a simple module”. This result has been generalized by Yang, using a result of Plamondon, to any simple mutation of maximal rigid objects in a 2-Calabi–Yau triangulated category. In this paper, we investigate the more general case of any mutation of a (non-necessarily maximal) rigid object in a triangulated category with a Serre functor. In that setup, the endomorphism algebras might not be nearly Morita equivalent, and we obtain a weaker property that we call pseudo-Morita equivalence. Inspired by Buan and Marsh (From triangulated categories to module categories via localization II: calculus of fractions, J. Lond. Math. Soc. (2) 86(1) (2012), 152–170; From triangulated categories to module categories via localisation, Trans. Amer. Math. Soc. 365(6) (2013), 2845–2861), we also describe our result in terms of localizations.

Copyright
References
Hide All
[Ami07] Amiot, C., On the structure of triangulated categories with finitely many indecomposables , Bull. Soc. Math. France 135(3) (2007), 435474.
[Ami09] Amiot, C., Cluster categories for algebras of global dimension 2 and quivers with potential , Ann. Inst. Fourier (Grenoble) 59(6) (2009), 25252590.
[Bel13] Beligiannis, A. D., Rigid objects, triangulated subfactors and abelian localizations , Math. Z. 274(3) (2013), 841883.
[BIKR08] Burban, I., Iyama, O., Keller, B. and Reiten, I., Cluster tilting for one-dimensional hypersurface singularities , Adv. Math. 217(6) (2008), 24432484.
[BKL08] Barot, M., Kussin, D. and Lenzing, H., The Grothendieck group of a cluster category , J. Pure Appl. Algebra 212(1) (2008), 3346.
[BM12] Buan, A. B. and Marsh, R. J., From triangulated categories to module categories via localization II: calculus of fractions , J. Lond. Math. Soc. (2) 86(1) (2012), 152170.
[BM13] Buan, A. B. and Marsh, R. J., From triangulated categories to module categories via localisation , Trans. Amer. Math. Soc. 365(6) (2013), 28452861.
[BMR+06] Buan, A. B., Marsh, R., Reineke, M., Reiten, I. and Todorov, G., Tilting theory and cluster combinatorics , Adv. Math. 204(2) (2006), 572618.
[BMR07] Buan, A. B., Marsh, R. J. and Reiten, I., Cluster-tilted algebras , Trans. Amer. Math. Soc. 359(1) (2007), 323332 (electronic).
[BMV10] Buan, A. B., Marsh, R. J. and Vatne, D. F., Cluster structures from 2-Calabi–Yau categories with loops , Math. Z. 265(4) (2010), 951970.
[GLS] Geiß, C., Leclerc, B. and Schröer, J., Cluster algebra structures and semicanonical bases for unipotent groups, preprint, arXiv:math/0703039 [math.RT].
[GLS11] Geiß, C., Leclerc, B. and Schröer, J., Kac–Moody groups and cluster algebras , Adv. Math. 228(1) (2011), 329433.
[Guo11] Guo, L., Cluster tilting objects in generalized higher cluster categories , J. Pure Appl. Algebra 215(9) (2011), 20552071.
[HJ12] Holm, T. and Jørgensen, P., On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon , Math. Z. 270(1–2) (2012), 277295.
[HJ13] Holm, T. and Jørgensen., P., Realizing higher cluster categories of Dynkin type as stable module categories , Q. J. Math. 64(2) (2013), 409435.
[IY08] Iyama, O. and Yoshino, Y., Mutation in triangulated categories and rigid Cohen–Macaulay modules , Invent. Math. 172(1) (2008), 117168.
[Jør09] Jørgensen, P., Auslander–Reiten triangles in subcategories , J. K-Theory 3(3) (2009), 583601.
[Kel05] Keller, B., On triangulated orbit categories , Doc. Math. 10 (2005), 551581.
[KR07] Keller, B. and Reiten, I., Cluster-tilted algebras are Gorenstein and stably Calabi–Yau , Adv. Math. 211(1) (2007), 123151.
[ML98] Mac Lane, S., Categories for the Working Mathematician, 2nd ed., Graduate Texts in Mathematics 5 , Springer, New York, 1998.
[Nak13] Nakaoka, H., General heart construction for twin torsion pairs on triangulated categories , J. Algebra 374 (2013), 195215.
[Pla11] Plamondon, P.-G., Cluster characters for cluster categories with infinite-dimensional morphism spaces , Adv. Math. 227(1) (2011), 139.
[RvdB02] Reiten, I. and Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality , J. Amer. Math. Soc. 15(2) (2002), 295366.
[Yan12] Yang, D., Endomorphism algebras of maximal rigid objects in cluster tubes , Comm. Algebra 40(12) (2012), 43474371.
[YZZ15] Yang, W., Zhang, J. and Zhu, B., On cluster-tilting objects in a triangulated category with Serre duality, Comm. Algebra (2015), to appear.
[YZ15] Yang, W. and Zhu, B., Ghost-tilting objects in triangulated categories, preprint, arXiv:1504.00093 [math.RT].
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed