Skip to main content Accessibility help
×
Home

STRONGLY QUASI-HEREDITARY ALGEBRAS AND REJECTIVE SUBCATEGORIES

  • MAYU TSUKAMOTO (a1)

Abstract

Ringel’s right-strongly quasi-hereditary algebras are a distinguished class of quasi-hereditary algebras of Cline–Parshall–Scott. We give characterizations of these algebras in terms of heredity chains and right rejective subcategories. We prove that any artin algebra of global dimension at most two is right-strongly quasi-hereditary. Moreover we show that the Auslander algebra of a representation-finite algebra $A$ is strongly quasi-hereditary if and only if $A$ is a Nakayama algebra.

Copyright

Footnotes

Hide All

This work is supported by Grant-in-Aid for JSPS Fellowships No. H15J09492.

Footnotes

References

Hide All
[1] Assem, I., Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, Techniques of Representation Theory 65 , Cambridge University Press, Cambridge, 2006.
[2] Auslander, M., Representation Dimension of Artin Algebras, Queen Mary College, 1970.
[3] Auslander, M., Reiten, I. and Smalø, S. O., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics 36 , Cambridge University Press, Cambridge, 1995.
[4] Auslander, M. and Smalø, S. O., Preprojective modules over Artin algebras , J. Algebra 66(1) (1980), 61122.
[5] Cline, E., Parshall, B. and Scott, L., Finite-dimensional algebras and highest weight categories , J. Reine Angew. Math. 391 (1985), 8599.
[6] Conde, T., The quasihereditary structure of the Auslander–Dlab–Ringel algebra , J. Algebra 460 (2016), 181202.
[7] Conde, T., $\unicode[STIX]{x1D6E5}$ -filtrations and projective resolutions for the Auslander–Dlab–Ringel algebra, Algebr. Represent. Theory, preprint, 2017, arXiv:1703.03482v2.
[8] Dlab, V. and Ringel, C. M., Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring , Proc. Amer. Math. Soc. 107(1) (1980), 15.
[9] Dlab, V. and Ringel, C. M., Quasi-hereditary algebras , Illinois J. Math. 33(2) (1980), 280291.
[10] Dlab, V. and Ringel, C. M., “ The module theoretical approach to quasi-hereditary algebras ”, in Representations of Algebras and Related Topics (Kyoto, 1990), London Math. Soc. Lecture Note Ser. 168 , Cambridge University Press, Cambridge, 1992, 200224.
[11] Donkin, S., The q-Schur Algebra, London Mathematical Society Lecture Note Series 253 , Cambridge University Press, Cambridge, 1998.
[12] Donkin, S. and Reiten, I., On Schur algebras and related algebras. V. Some quasi-hereditary algebras of finite type , J. Pure Appl. Algebra 97(2) (1994), 117134.
[13] Eiríksson, Ö., From submodule categories to the stable Auslander algebra , J. Algebra 486 (2017), 98118.
[14] Erdmann, K., Schur algebras of finite type , Quart. J. Math. Oxford Ser. (2) 44(173) (1993), 1741.
[15] Geiss, C., Leclerc, B. and Schröer, J., Cluster algebra structures and semicanonical bases for unipotent groups, Algebr. Represent. Theory, preprint, 2007, arXiv:math/0703039v4.
[16] Iyama, O., Finiteness of representation dimension , Proc. Amer. Math. Soc. 131(4) (2003), 10111014.
[17] Iyama, O., Rejective subcategories of artin algebras and orders, Algebr. Represent. Theory, preprint, 2003, arXiv:math/0311281v1.
[18] Iyama, O., “ Representation dimension and Solomon zeta function ”, in Representations of Finite Dimensional Algebras and Related Topics in Lie theory and Geometry, Fields Inst., Commun. 40 , Amer. Math. Soc., Providence, RI, 2004, 4564.
[19] Iyama, O. and Reiten, I., 2-Auslander algebras associated with reduced words in Coxeter groups , Int. Math. Res. Not. IMRN (8) (2011), 17821803.
[20] Parshall, B. and Scott, L., Derived Categories, Quasi-hereditary Algebras, and Algebraic Groups, Carlton University Mathematical Notes 3 , 1988, 1104.
[21] Ringel, C. M., The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences , Math. Z. 208(2) (1991), 209223.
[22] Ringel, C. M., Iyama’s finiteness theorem via strongly quasi-hereditary algebras , J. Pure Appl. Algebra 214(9) (2010), 16871692.
[23] Scott, L., “ Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories ”, in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math. 47 , Amer. Math. Soc., Providence, RI, 1987, 271281. Part 2.
[24] Stenström, B., “ An introduction to methods of ring theory ”, in Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften, Band 217 , Springer, New York-Heidelberg, 1975.
[25] Uematsu, M. and Yamagata, K., On serial quasi-hereditary rings , Hokkaido Math. J. 19(1) (1990), 165174.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

STRONGLY QUASI-HEREDITARY ALGEBRAS AND REJECTIVE SUBCATEGORIES

  • MAYU TSUKAMOTO (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed