[1]
Aubert G. and Kornprobst P., Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer-Verlag, New York, USA, 2006.

[2]
Bauschke H. H., Burachik R., Combettes P. L., Elser V., Luke D. R. and Wolkowicz H., Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Science and Business Media, 2011.

[3]
Beck A. and Teboulle M., Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), pp. 2419–2434.

[4]
Becker S. and Fadili J., A quasi-newton proximal splitting method, in NIPS, 2012, pp. 2618–2626.

[5]
Boyd S. and Vandenberghe L., Convex Optimization, Cambridge University Press, New York, USA, 2004.

[6]
Cai J. F., Chan R. H. and Shen Z., A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 24 (2008), pp. 131–149.

[7]
Canny J., A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8 (1986), pp. 679–698.

[8]
Chambolle A. and Lions P. L., Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), pp. 167–188.

[9]
Chambolle A. and Pock T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), pp. 120–145.

[10]
Chan R. H., Wen Y. W. and Yip A. M., A fast optimization transfer algorithm for image inpainting in wavelet domains, IEEE Trans. Image Process., 18 (2009), pp. 1467–1476.

[11]
Chan T. F., Esedoglu S. and Nikolova M., Algorithms for finding global minimizers of image segmentation and denoising models, SIAM J. Appl. Math., 66 (2006), pp. 1632–1648.

[12]
Chan T. F., Golub G. H. and Mulet P., A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964–1977.

[13]
Chan T. F., Ng M. K., Yau A. C. and Yip A. M., Superresolution image reconstruction using fast inpainting algorithms, Appl. Comput. Harmon. Anal., 23 (2007), pp. 3–24.

[14]
Chan T. F. and Shen J., Variational image inpainting, Commun. Pure Appl. Math., 58 (2005), pp. 579–619.

[15]
Chan T. F., Shen J. and Zhou H. M., Total variation wavelet inpainting, J. Math. Imaging Vis., 25 (2006), pp. 107–125.

[16]
Chan T. F. and Vese L. A., Active contours without edges, IEEE Trans. Image Process., 10 (2001), pp. 266–277.

[17]
Chartrand R. and Wohlberg B., Total-variation regularization with bound constraints, in IEEE ICASSP, 2010, pp. 766–769.

[18]
Chen X., Ng M. K. and Zhang C., Non-Lipschitz l_{p}-regularization and box constrained model for image restoration, IEEE Trans. Image Process., 21 (2012), pp. 4709–4721.

[19]
Chen Y., Yu W. and Pock T., On learning optimized reaction diffusion processes for effective image restoration, in IEEE CVPR, 2015, pp. 87–90.

[20]
Dey N., Blanc-Féraud L., Zimmer Z. K. C., Olivo-Marin J. C. and Zerubia J., A deconvolution method for confocal microscopy with total variation regularization, in IEEE Intern. Symp. on Biomedical Imaging: Macro to Nano, 2004, pp. 1223–1226.

[21]
Esser E., Zhang X. and Chan T. F., A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), pp. 1015–1046.

[22]
Goldstein T. and Osher S., The split bregman method for l1-regularized problems, SIAM J. Imaging Sci., 2 (2009), pp. 323–343.

[23]
Haimes Y. Y., Lasdon L. S. and Wismer D. A., On a bicriterion formulation of the problems of integrated system identification and system optimization, IEEE Trans. Syst. Man Cyber., 1 (1971), pp. 296–297.

[24]
Hintermüller M., Ito K. and Kunisch K., The primal-dual active set strategy as a semismooth Newtons method, SIAM J. Optim., 13 (2003), pp. 865–888.

[25]
Krishnan D., Lin P. and Yip A. M., A primal-dual active-set method for non-negativity constrained total variation deblurring problems, IEEE Trans. Image Process., 16 (2007), pp. 2766–2777.

[26]
Krishnan D., Pham Q. V. and Yip A. M., A primal dual active set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems, Adv. Comput. Math., 31 (2009), pp. 237–266.

[27]
Larson E. C. and Chandler D. M., Most apparent distortion: full-reference image quality assessment and the role of strategy, J. Electron. Imaging, 19 (2010), 011006.

[28]
Law Y. N., Lee H. K. and Yip A. M., A multi-resolution stochastic level set method for Mumford-Shah image segmentation, IEEE Trans. Image Process., 17 (2008), pp. 2289–2300.

[29]
Liu R., Lin Z., Zhang W. and Su Z., Learning PDEs for Image Restoration via Optimal Control, in ECCV, 2010, pp. 115–128.

[30]
Martin D., Fowlkes C., Tal D. and Malik J., *A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics*, in IEEE ICCV, 2001.

[31]
Mersereau R. M. and Schafer R. W., Comparative study of iterative deconvolution algorithms, in IEEE ICASSP, 1978, pp. 192–195.

[32]
Morel J. M. and Solimini S., Variational Methods in Image Segmentation, Birkhauser Boston Inc., Cambridge, USA, 1995.

[33]
Paragios N., Chen Y. and Faugeras O. D., Handbook of Mathematical Models in Computer Vision, Springer Science and Business Media, 2006.

[34]
Persson M., Bone D. and Elmqvist H., Total variation norm for three-dimension iterative reconstruction in limited view angle tomography, Phys. Med. Biol., 46 (2001), pp. 853–866.

[35]
Ponomarenko N., Jin L., Ieremeiev O., Lukin V., Egiazarian K., Astola J., Vozel B., Chehdi K., Carli M., Battisti F.
et al., Image database TID2013: peculiarities, results and perspectives, Signal Process. Image Commun., 30 (2015), pp. 57–77.

[36]
Rudin L. I., Osher S. and Fatemi E., Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259–268.

[37]
Schafer R. W., Mersereau R. M. and Richards M. A., Constrained iterative restoration algorithms, Proc. IEEE, 69 (1981), pp. 432–450.

[38]
Scherzer O., Handbook of Mathematical Methods in Imaging, Springer-Verlag, New York, USA, 2011.

[39]
Sheikh H. R., Sabir M. F. and Bovik A. C., A statistical evaluation of recent full reference image quality assessment algorithms, IEEE Trans. Image Process., 15 (2006), pp. 3440–3451.

[40]
Tai C., Zhang X. and Shen Z., Wavelet frame based multiphase image segmentation, SIAM J. Imaging Sci., 6 (2013), pp. 2521–2546.

[41]
Tai X. C., Lie K. A., Chan T. F. and Osher S., Image Processing Based on Partial Differential Equations, Springer-Verlag, New York, USA, 2007.

[42]
Tai X. C., Mørken K., Lysaker M. and Lie K. A., Scale Space and Variational Methods in Computer Vision, Springer Berlin Heidelberg, 2009.

[43]
Tikhonov A. N. and Arsenin V. Y., Solutions of Ill-Posed Problems, Winston and Sons, Washington, D. C., 1977.

[44]
Vogel C. R., Computational Methods for Inverse Problems, SIAM, Philadelphia, USA, 2002.

[45]
Weickert J., Ishikawa S. and Imiya A., Linear scale-space has first been proposed in Japan, J. Math. Imaging Vis., 10 (1999), pp. 237–252.

[46]
Wu C. and Tai X. C., Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), pp. 300–339.

[47]
You Y. L. and Kaveh M., Blind image restoration by anisotropic regularization, IEEE Trans. Image Process., 8 (1999), pp. 396–407.