Skip to main content
×
Home

Learning Non-Negativity Constrained Variation for Image Denoising and Deblurring

  • Tengda Wei (a1), Linshan Wang (a2), Ping Lin (a3), Jialing Chen (a3), Yangfan Wang (a4) and Haiyong Zheng (a5)...
Abstract
Abstract

This paper presents a heuristic Learning-based Non-Negativity Constrained Variation (L-NNCV) aiming to search the coefficients of variational model automatically and make the variation adapt different images and problems by supervised-learning strategy. The model includes two terms: a problem-based term that is derived from the prior knowledge, and an image-driven regularization which is learned by some training samples. The model can be solved by classical ε-constraint method. Experimental results show that: the experimental effectiveness of each term in the regularization accords with the corresponding theoretical proof; the proposed method outperforms other PDE-based methods on image denoising and deblurring.

Copyright
Corresponding author
*Corresponding author. Email addresses: tdwei123@163.com (T. Wei), wangls@ouc.edu.cn (L. Wang), plin@maths.dundee.ac.uk (P. Lin), j.z.chen@dundee.ac.uk (J. Chen), yfwang@ouc.edu.cn (Y. Wang), zhenghaiyong@ouc.edu.cn (H. Zheng)
References
Hide All
[1] Aubert G. and Kornprobst P., Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer-Verlag, New York, USA, 2006.
[2] Bauschke H. H., Burachik R., Combettes P. L., Elser V., Luke D. R. and Wolkowicz H., Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Science and Business Media, 2011.
[3] Beck A. and Teboulle M., Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), pp. 24192434.
[4] Becker S. and Fadili J., A quasi-newton proximal splitting method, in NIPS, 2012, pp. 26182626.
[5] Boyd S. and Vandenberghe L., Convex Optimization, Cambridge University Press, New York, USA, 2004.
[6] Cai J. F., Chan R. H. and Shen Z., A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 24 (2008), pp. 131149.
[7] Canny J., A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8 (1986), pp. 679698.
[8] Chambolle A. and Lions P. L., Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), pp. 167188.
[9] Chambolle A. and Pock T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), pp. 120145.
[10] Chan R. H., Wen Y. W. and Yip A. M., A fast optimization transfer algorithm for image inpainting in wavelet domains, IEEE Trans. Image Process., 18 (2009), pp. 14671476.
[11] Chan T. F., Esedoglu S. and Nikolova M., Algorithms for finding global minimizers of image segmentation and denoising models, SIAM J. Appl. Math., 66 (2006), pp. 16321648.
[12] Chan T. F., Golub G. H. and Mulet P., A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 19641977.
[13] Chan T. F., Ng M. K., Yau A. C. and Yip A. M., Superresolution image reconstruction using fast inpainting algorithms, Appl. Comput. Harmon. Anal., 23 (2007), pp. 324.
[14] Chan T. F. and Shen J., Variational image inpainting, Commun. Pure Appl. Math., 58 (2005), pp. 579619.
[15] Chan T. F., Shen J. and Zhou H. M., Total variation wavelet inpainting, J. Math. Imaging Vis., 25 (2006), pp. 107125.
[16] Chan T. F. and Vese L. A., Active contours without edges, IEEE Trans. Image Process., 10 (2001), pp. 266277.
[17] Chartrand R. and Wohlberg B., Total-variation regularization with bound constraints, in IEEE ICASSP, 2010, pp. 766769.
[18] Chen X., Ng M. K. and Zhang C., Non-Lipschitz lp-regularization and box constrained model for image restoration, IEEE Trans. Image Process., 21 (2012), pp. 47094721.
[19] Chen Y., Yu W. and Pock T., On learning optimized reaction diffusion processes for effective image restoration, in IEEE CVPR, 2015, pp. 8790.
[20] Dey N., Blanc-Féraud L., Zimmer Z. K. C., Olivo-Marin J. C. and Zerubia J., A deconvolution method for confocal microscopy with total variation regularization, in IEEE Intern. Symp. on Biomedical Imaging: Macro to Nano, 2004, pp. 12231226.
[21] Esser E., Zhang X. and Chan T. F., A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), pp. 10151046.
[22] Goldstein T. and Osher S., The split bregman method for l1-regularized problems, SIAM J. Imaging Sci., 2 (2009), pp. 323343.
[23] Haimes Y. Y., Lasdon L. S. and Wismer D. A., On a bicriterion formulation of the problems of integrated system identification and system optimization, IEEE Trans. Syst. Man Cyber., 1 (1971), pp. 296297.
[24] Hintermüller M., Ito K. and Kunisch K., The primal-dual active set strategy as a semismooth Newtons method, SIAM J. Optim., 13 (2003), pp. 865888.
[25] Krishnan D., Lin P. and Yip A. M., A primal-dual active-set method for non-negativity constrained total variation deblurring problems, IEEE Trans. Image Process., 16 (2007), pp. 27662777.
[26] Krishnan D., Pham Q. V. and Yip A. M., A primal dual active set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems, Adv. Comput. Math., 31 (2009), pp. 237266.
[27] Larson E. C. and Chandler D. M., Most apparent distortion: full-reference image quality assessment and the role of strategy, J. Electron. Imaging, 19 (2010), 011006.
[28] Law Y. N., Lee H. K. and Yip A. M., A multi-resolution stochastic level set method for Mumford-Shah image segmentation, IEEE Trans. Image Process., 17 (2008), pp. 22892300.
[29] Liu R., Lin Z., Zhang W. and Su Z., Learning PDEs for Image Restoration via Optimal Control, in ECCV, 2010, pp. 115128.
[30] Martin D., Fowlkes C., Tal D. and Malik J., A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in IEEE ICCV, 2001.
[31] Mersereau R. M. and Schafer R. W., Comparative study of iterative deconvolution algorithms, in IEEE ICASSP, 1978, pp. 192195.
[32] Morel J. M. and Solimini S., Variational Methods in Image Segmentation, Birkhauser Boston Inc., Cambridge, USA, 1995.
[33] Paragios N., Chen Y. and Faugeras O. D., Handbook of Mathematical Models in Computer Vision, Springer Science and Business Media, 2006.
[34] Persson M., Bone D. and Elmqvist H., Total variation norm for three-dimension iterative reconstruction in limited view angle tomography, Phys. Med. Biol., 46 (2001), pp. 853866.
[35] Ponomarenko N., Jin L., Ieremeiev O., Lukin V., Egiazarian K., Astola J., Vozel B., Chehdi K., Carli M., Battisti F. et al., Image database TID2013: peculiarities, results and perspectives, Signal Process. Image Commun., 30 (2015), pp. 5777.
[36] Rudin L. I., Osher S. and Fatemi E., Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259268.
[37] Schafer R. W., Mersereau R. M. and Richards M. A., Constrained iterative restoration algorithms, Proc. IEEE, 69 (1981), pp. 432450.
[38] Scherzer O., Handbook of Mathematical Methods in Imaging, Springer-Verlag, New York, USA, 2011.
[39] Sheikh H. R., Sabir M. F. and Bovik A. C., A statistical evaluation of recent full reference image quality assessment algorithms, IEEE Trans. Image Process., 15 (2006), pp. 34403451.
[40] Tai C., Zhang X. and Shen Z., Wavelet frame based multiphase image segmentation, SIAM J. Imaging Sci., 6 (2013), pp. 25212546.
[41] Tai X. C., Lie K. A., Chan T. F. and Osher S., Image Processing Based on Partial Differential Equations, Springer-Verlag, New York, USA, 2007.
[42] Tai X. C., Mørken K., Lysaker M. and Lie K. A., Scale Space and Variational Methods in Computer Vision, Springer Berlin Heidelberg, 2009.
[43] Tikhonov A. N. and Arsenin V. Y., Solutions of Ill-Posed Problems, Winston and Sons, Washington, D. C., 1977.
[44] Vogel C. R., Computational Methods for Inverse Problems, SIAM, Philadelphia, USA, 2002.
[45] Weickert J., Ishikawa S. and Imiya A., Linear scale-space has first been proposed in Japan, J. Math. Imaging Vis., 10 (1999), pp. 237252.
[46] Wu C. and Tai X. C., Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), pp. 300339.
[47] You Y. L. and Kaveh M., Blind image restoration by anisotropic regularization, IEEE Trans. Image Process., 8 (1999), pp. 396407.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Numerical Mathematics: Theory, Methods and Applications
  • ISSN: 1004-8979
  • EISSN: 2079-7338
  • URL: /core/journals/numerical-mathematics-theory-methods-and-applications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 120 *
Loading metrics...

* Views captured on Cambridge Core between 12th September 2017 - 14th December 2017. This data will be updated every 24 hours.