Skip to main content
×
×
Home

Estimating the population size of migrating Tibetan antelopes Pantholops hodgsonii with unmanned aerial vehicles

  • Jianbo Hu (a1), Xiaomin Wu (a2) and Mingxing Dai (a1)
Abstract

Data on the distribution and population size of the Near Threatened Tibetan antelope Pantholops hodgsonii are necessary to protect this species. Ground-based count surveys are usually carried out from a long distance to avoid disturbing the sensitive animals, and on calving grounds or along migration routes where they are seasonally concentrated. This can result in underestimation of population sizes if terrain features obstruct the view and high concentrations of animals make estimating numbers difficult. Here we test the efficacy of unmanned aerial vehicles (UAVs) for gathering population data for the Tibetan antelope. We conducted the study south of a known calving ground, at the foot of Sewu Snow Mountain, in the Chang Tang National Nature Reserve, China. The UAV did not appear to disturb the animals and resulted in more accurate counts than ground-based observations. A total of 23,063 Tibetan antelopes were identified in twelve orthoimages derived from c. 4,000 aerial photographs. In the first flight area 7,671 females and 4,353 calves were identified (proportion of calves: 36.2%). In the second flight area 7,989 females and 3,050 calves were identified (proportion of calves: 27.6%). Two flights over the same area revealed the direction and speed of moving Tibetan antelope groups. Image resolution, which can be controlled with flight planning, was an important factor in determining the animals’ visibility in the photos. We found that UAV-based surveys outperformed ground-based surveys, and that larger UAVs are preferable for this application.

Copyright
Corresponding author
(Corresponding author) E-mail whogamble@hotmail.com
References
Hide All
Anderson, K. & Gaston, K.J. (2013) Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11, 138146.
Bleisch, W.V., Buzzard, P.J., Zhang, H., , D., Liu, Z., Li, W. & Wong, H. (2009) Surveys at a Tibetan antelope Pantholops hodgsonii calving ground adjacent to the Arjinshan Nature Reserve, Xinjiang, China: decline and recovery of a population. Oryx, 43, 191196.
Borrelle, S.B. & Fletcher, A.T. (2017) Will drones reduce investigator disturbance to surface-nesting birds? Marine Ornithology, 45, 8994.
Buho, H., Jiang, Z., Liu, C., Yoshida, T., Mahamut, H., Kaneko, M. et al. (2011) Preliminary study on migration pattern of the Tibetan antelope (Pantholops hodgsonii) based on satellite tracking. Advances in Space Research, 48, 4348.
Buzzard, P.J., Wong, H.M. & Zhang, H. (2012) Population increase at a calving ground of the Endangered Tibetan antelope Pantholops hodgsonii in Xinjiang, China. Oryx, 46, 266268.
Chabot, D. & Bird, D.M. (2016) Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? Journal of Unmanned Vehicle Systems, 3, 137155.
Christie, K.S., Gilbert, S.L., Brown, C.L., Hatfield, M. & Hanson, L. (2016) Unmanned aircraft systems in wildlife research: current and future applications of a transformative technology. Frontiers in Ecology and the Environment, 14, 241251.
CITES (2017) Convention on International Trade in Endangered Species of Wild Fauna and Flora. Appendices I, II and III. Https://cites.org/sites/default/files/eng/app/2017/E-Appendices-2017-10-04.pdf [accessed 02 February 2018].
Drever, M.C., Chabot, D., O'Hara, P.D., Thomas, J.D., Breault, A. & Millikin, R.L. (2015) Evaluation of an unmanned rotorcraft to monitor wintering waterbirds and coastal habitats in British Columbia, Canada. Journal of Unmanned Vehicle Systems, 3, 256267.
Fox, J.L., Dhondup, K. & Dorji, T. (2009) Tibetan antelope Pantholops hodgsonii conservation and new rangeland management policies in the western Chang Tang Nature Reserve, Tibet: is fencing creating an impasse? Oryx, 43, 183190.
Harris, R.B., Pletscher, D.H., Loggers, C.O. & Miller, D.J. (1999) Status and trends of Tibetan plateau mammalian fauna, Yeniugou, China. Biological Conservation, 87, 1319.
Hodgson, J. & Koh, L.P. (2016a) A guide to using drones to study wildlife: first, do no harm. The Conversation. Https://theconversation.com/a-guide-to-using-drones-to-study-wildlife-first-do-no-harm-57069 [accessed 02 February 2018].
Hodgson, J.C. & Koh, L.P. (2016b) Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research. Current Biology, 26, R404–R405.
Hodgson, J.C., Baylis, S.M., Mott, R., Herrod, A. & Clarke, R.H. (2016) Precision wildlife monitoring using unmanned aerial vehicles. Scientific Reports, 6, 22574.
IUCN SSC Antelope Specialist Group (2016) Pantholops hodgsonii. In The IUCN Red List of Threatened Species 2016: e.T15967A50192544. Http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T15967A50192544.en [accessed 6 February 2018].
Koh, L.P. & Wich, S.A. (2012) Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Tropical Conservation Science, 5, 121132.
Koski, W.R., Allen, T., Ireland, D., Buck, G. & Smith, P.R. (2009) Evaluation of an unmanned airborne system for monitoring marine mammals. Aquatic Mammals, 35, 347357.
Lei, W. (2013) Live cross: Antelopes on Sewu Snow Mountain. (ed. James), China Central Television. Http://english.cntv.cn/program/newsupdate/20130702/104667.shtml [accessed 02 February 2018].
Leslie, D.M. Jr & Schaller, G.B. (2008) Pantholops hodgsonii (Artiodactyla: Bovidae). Mammalian Species, 817, 113.
Liu, C.-C., Chen, Y.-H. & Wen, H.-L. (2015) Supporting the annual international black-faced spoonbill census with a low-cost unmanned aerial vehicle. Ecological Informatics, 30, 170178.
Manayeva, K., Hoshino, B., Igota, H., Nakazawa, T. & Sumiya, G. (2017) Seasonal migration and home ranges of Tibetan antelopes (Pantholops hodgsonii) based on satellite tracking. International Journal of Zoological Research, 13, 2637.
Mcevoy, J.F., Hall, G.P. & Mcdonald, P.G. (2016) Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition. PeerJ, 4, e1831.
Rodríguez, A., Negro, J.J., Mulero, M., Rodríguez, C., Hernández-Pliego, J. & Bustamante, J, . (2012) The eye in the sky: combined use of Unmanned Aerial Systems and GPS data loggers for ecological research and conservation of small birds. PLoS ONE, 7, e50336.
Schaller, G.B. (2000) Wildlife of the Tibetan Steppe. University of Chicago Press, Chicago, USA.
Schaller, G.B., Kang, A., Cai, X. & Liu, Y. (2006) Migratory and calving behavior of Tibetan antelope population. Acta Theriologica Sinica, 26, 105113.
Schaller, G.B., Kang, A., Hashi, T.-D. & Cai, P. (2007) A winter wildlife survey in the northern Qiangtang of Tibet autonomous region and Qinghai province, China. Acta Theriologica Sinica, 27, 309316.
van Zyl, J.J. (2001) The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronautica, 48, 559565.
Vermeulen, C., Lejeune, P., Lisein, J., Sawadogo, P. & Bouché, P. (2013) Unmanned aerial survey of elephants. PLoS ONE, 8, e54700.
Watts, A.C., Perry, J.H., Smith, S.E., Burgess, M.A., Wilkinson, B.E., Szantoi, Z. et al. (2010) Small unmanned aircraft systems for low-altitude aerial surveys. Journal of Wildlife Management, 74, 16141619.
World Heritage Encyclopedia (2016) List of endangered and protected species of China. In World Heritage Encyclopedia. Http://www.worldheritage.org/article/WHEBN0039183628/List%20of%20endangered%20and%20protected%20species%20of%20China [accessed 02 February 2018].
Wu, X.M. & Zhang, H.F. (2011) Resources regarding populations of Tibetan Antelope (Pantholops hodgsonii) and the status of its protection. Chinese Journal of Nature, 33, 143148.
Xia, L., Yang, Q., Li, Z. & Feng, Y.W.Z. (2007) The effect of the Qinghai–Tibet railway on the migration of Tibetan antelope Pantholops hodgsonii in Hoh-xil National Nature Reserve, China. Oryx, 41, 352357.
Zhang, H., Huang, W., Wei, D. & Jiang, J. (2016) A wildlife monitoring system based on Tianditu and Beidou: in case of the Tibetan antelope. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, XLI-B4, 259262.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Oryx
  • ISSN: 0030-6053
  • EISSN: 1365-3008
  • URL: /core/journals/oryx
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 145 *
Loading metrics...

* Views captured on Cambridge Core between 26th April 2018 - 23rd June 2018. This data will be updated every 24 hours.