Skip to main content Accessibility help
×
Home

The sarolga: conservation implications of genetic and visual evidence for hybridization between the brolga Antigone rubicunda and the Australian sarus crane Antigone antigone gillae

  • Timothy D. Nevard (a1), Martin Haase (a2), George Archibald (a3), Ian Leiper (a1) and Stephen T. Garnett (a1)...

Abstract

To investigate the extent of suspected hybridization between the brolga Antigone rubicunda and the Australian sarus crane Antigone antigone gillae, first noted in the 1970s, we analysed the genetic diversity of 389 feathers collected from breeding and flocking areas in north Queensland, Australia. We compared these with 15 samples from birds of known identity, or that were phenotypically typical. Bayesian clustering based on 10 microsatellite loci identified nine admixed birds, confirming that Australian cranes hybridize in the wild. Four of these were backcrosses, also confirming that wild Australian crane hybrids are fertile. Genetic analyses identified 10 times more hybrids than our accompanying visual field observations. Our analyses also provide the first definitive evidence that both brolgas and sarus cranes migrate between the Gulf Plains, the principal breeding area for sarus cranes, and major non-breeding locations on the Atherton Tablelands. We suggest that genetic analysis of shed feathers could potentially offer a cost-effective means to provide ongoing monitoring of this migration. The first observations of hybrids coincided with significantly increased opportunities for interaction between the two species when foraging on agricultural crops, which have developed significantly in the Atherton Tablelands flocking area since the 1960s. As the sarus crane is declining in much of its Asian range, challenges to the genetic integrity of the Australian sarus crane populations have international conservation significance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The sarolga: conservation implications of genetic and visual evidence for hybridization between the brolga Antigone rubicunda and the Australian sarus crane Antigone antigone gillae
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The sarolga: conservation implications of genetic and visual evidence for hybridization between the brolga Antigone rubicunda and the Australian sarus crane Antigone antigone gillae
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The sarolga: conservation implications of genetic and visual evidence for hybridization between the brolga Antigone rubicunda and the Australian sarus crane Antigone antigone gillae
      Available formats
      ×

Copyright

Corresponding author

(Corresponding author) E-mail tnevard@woothakata.com

Footnotes

Hide All
*

Also at: Wildlife Conservancy of Tropical Queensland, Ravenshoe, Queensland, Australia

Footnotes

References

Hide All
Allendorf, F.W., Leary, R.F., Spruell, P. & Wenburg, J.K. (2001) The problems with hybrids: setting conservation guidelines. Trends in Ecology & Evolution, 16, 613622.
Archibald, G.W. (1981) Introducing the sarolga. In Crane Research Around the World. Proceedings of the International Crane Symposium at Sapporo, Japan in 1980 and Papers From the World Working Group on Cranes (eds Lewis, J.C. & Masatomi, H.), pp. 213215. International Council for Bird Preservation.
Archibald, G.W., Sundar, K.S.G. & Barzen, J. (2003) A review of the three subspecies of sarus cranes Grus antigone. Journal of Ecological Society, 16, 515.
Arnold, M.L. (1997) Natural Hybridization and Evolution. Oxford University Press, Oxford, UK.
Barrett, G., Silcocks, A., Barry, S. & Poulter, R. (2003) The New Atlas of Australian Birds. Royal Australasian Ornithological Union, Melbourne, Australia.
Barton, N.H. & Slatkin, M. (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity, 56, 409415.
BirdLife International & NatureServe (2014) Bird Species Distribution Maps of the World. Http://datazone.birdlife.org/site/search [accessed 8 August 2018].
BirdLife International (2016) Antigone antigone. In The IUCN Red List of Threatened Species 2016: e.T22692064A93335364. Http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22692064A93335364.en [accessed 8 August 2018].
Burke, J.M. & Arnold, M.L. (2001) Genetics and the fitness of hybrids. Annual Review of Genetics, 35, 3152.
Caliński, R.B. & Harabasz, J. (1974) A dendrite method for cluster analysis. Communications in Statistics, 3, 127.
Clarke, R.H., Gordon, I.R. & Clarke, M.F. (2001) Intraspecific phenotypic variability in the black-eared miner (Manorina melanotis); human-facilitated introgression and the consequences for an endangered taxon. Biological Conservation, 99, 145155.
Department of the Environment and Energy (2012) Interim Biogeographic Regionalisation for Australia, Version 7 419 Sub Regions. Commonwealth of Australia, Canberra, Australia.
Department of Transport and Main Roads (2016) State Controlled Roads – Queensland. Department of Transport and Main Roads, Brisbane, Australia.
Devitt, T.J., Baird, S.J.E. & Moritz, C. (2011) Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone. BMC Evolutionary Biology, 11, 245.
Dowling, T.E. & Secor, C.L. (1997) The role of hybridization and introgression in the diversification of animals. Annual Review of Ecology and Systematics, 28, 593619.
Earl, D.A. & von Holdt, B.M. (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359361.
Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 26112620.
Falush, D., Stephens, M. & Pritchard, J.K. (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes, 7, 574578.
Fitzpatrick, B.M. (2012) Estimating ancestry and heterozygosity of hybrids using molecular markers. BMC Evolutionary Biology, 12, 131.
Franklin, D.C. (2008) Report 9: The waterbirds of Australian tropical rivers and wetlands. In A Compendium of Ecological Information on Australia's Northern Tropical Rivers (eds Lukacs, G.P. & Finlayson, C.M.). Sub-project 1 of Australia's Tropical Rivers—an Integrated Data Assessment and Analyses (DET18). A report to Land & Water Australia, National Centre for Tropical Wetland Research, Townsville, Queensland, Australia.
Garnett, S.T. & Crowley, G.M. (2000) The Action Plan for Australian Birds 2000. Environment Australia, Canberra. Australia.
Garnett, S.T., Franklin, D.C., Ehmke, G., VanDerWal, J.J., Hodgson, L., Pavey, C. et al. (2013) Climate Change Adaptation Strategies for Australian Birds. National Climate Change Adaptation Research Facility, Gold Coast, Australia.
Gill, H.B. (1967) The first record of the sarus crane in Australia. Emu, 69, 4952.
Goudet, J. (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity, 86, 485486.
Grant, J.D.A. (2005) Recruitment rate of sarus cranes (Grus antigone) in northern Queensland. Emu, 105, 311315.
Grant, P.R. & Grant, B.R. (2008) How & Why Species Multiply: The Radiation of Darwin's Finches. Princeton University Press, Princeton, USA and Oxford, UK.
Grant, P.R. & Grant, B.R. (2016) Introgressive hybridization and natural selection in Darwin's finches. Biological Journal of the Linnean Society, 117, 812822.
Gray, A.P. (1958) Bird Hybrids. Commonwealth Agricultural Bureau, Farnham Royal, UK.
Harding, C. (2001) Use of remote sensing and geographic information systems to predict suitable breeding habitat for the brolga Grus rubicundus in south-west Victoria. BSc thesis. Centre for Environmental Management, University of Ballarat, Victoria, Australia.
Hasegawa, O., Ishibashi, Y. & Abe, S. (2000) Isolation and charcterization of microsatellite loci in the red-crowned crane Grus japonensis. Molecular Ecology, 9, 16771678.
Herring, M.W. (2005) Threatened Species and Farming. Brolga: Management of Breeding Wetlands in Northern Victoria. Arthur Rylah Institute for Ecological Research, Heidelberg, Australia.
Herring, M.W. (2007) Brolga Breeding Habitat: Managing Wetlands on your Farm. Murray Catchment Management Authority, Albury, Australia.
Horwich, R.H. (1996) Imprinting, attachment, and behavioral development in cranes. In Cranes: Their Biology, Husbandry and Conservation (eds Ellis, D.H., Gee, G.F. & Mirande, C.M.), pp. 117122. Department of the Interior, National Biological Service/International Crane Foundation, Washington, DC, USA.
Hou, X., Xu, P., Lin, Z., d'Urban-Jackson, J., Dixon, A., Bold, B. et al. (2018). An integrated tool for microsatellite isolation and validation from the reference genome and their application in the study of breeding turnover in an endangered avian population. Integrative Zoology, 13, 553568.
Hughes, M.R. & Blackman, J.G. (1973) Cation content of salt gland secretion and tears in the brolga Grus rubicundus (Perry) (Aves: Gruidae). Australian Journal of Zoology, 21, 515518.
Johnsgard, P.A. (1983) Cranes of the World. Indiana University Press, Bloomington, USA.
Jones, K.L., Barzen, J.A. & Ashley, M.V. (2005) Geographical partitioning of microsatellite variation in the sarus crane. Animal Conservation, 8, 18.
Kaczensky, P., Guillaume, C., Huber, D., Andrén, H. & Linnell, J. (2012) Status, Management and Distribution of Large Carnivores – Bear, Lynx, Wolf and Wolverine in Europe. European Commission, Brussels, Belgium.
Kalinowski, S.T., Taper, M.L. & Marshall, T.C. (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 10991106.
Keyghobadi, N. (2007) The genetic implications of habitat fragmentation for animals. Canadian Journal of Zoology, 85, 10491064.
Kingsford, R.T., Porter, J.L. & Halse, S.A. (2012) National Waterbird Assessment. Waterlines report. National Water Commission, Canberra, Australia.
Koch, E.L., Neiber, M.T., Walther, F. & Hausdorf, B. (2017) High gene flow despite opposite chirality in hybrid zones between enantiomorphic door-snails. Molecular Ecology, 26, 39984012.
Krajewski, C., Sipiorski, J.T. & Anderson, F.E. (2010) Complete mitochondrial genome sequences and the phylogeny of cranes (Gruiformes: Gruidae). The Auk, 127, 440452.
Lamichhaney, S., Han, F., Berglund, J., Wang, C., Almén, M.S., Webster, M.T. et al. (2016) A beak size locus in Darwin's finches facilitated character displacement during a drought. Science, 352, 470474.
Lavery, H.J. & Blackman, J.G. (1969) The cranes of Australia. Queensland Agricultural Journal, 95, 156162.
Marchant, S. & Higgins, P.J. (eds) (1993) Handbook of Australian, New Zealand and Antarctic Birds. Volume 2. Raptors to Lapwings. Oxford University Press, Melbourne, Australia.
Matthiessen, P. (2002) The Birds of Heaven: Travels with Cranes. The Harvill Press, London, UK.
Meares, K., Dawson, D.A., Horsburgh, G.J., Glenn, T.C., Jones, K.L., Braun, M.J. et al. (2009) Microsatellite loci characterized in three African crane species (Gruidae, Aves). Molecular Ecology Resources, 9, 308311.
Meine, C.D. & Archibald, G.W. (eds) (1996) The Cranes: Status Survey and Conservation Action Plan. IUCN, Gland, Switzerland, and Cambridge, UK.
Meirmans, P.G. (2012) AMOVA-based clustering of population genetic data. Journal of Heredity, 103, 744750.
Meirmans, P.G. & van Tienderen, P.H. (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Resources, 4, 792794.
Menkhorst, P., Rogers, D., Clarke, R., Davies, J., Marsack, P. & Franklin, K. (2017) The Australian Bird Guide. CSIRO Publishing, Clayton South, Australia.
Miller, A. (2016) The Development of Microsatellite Loci through Next Generation Sequencing, and a Preliminary Assessment of Population Genetic Structure for the Iconic Australian Crane, Brolga (Antigone rubicunda). Nature Glenelg Trust, Warrnambool, Victoria.
Miller, M.P. & Haig, S.M. (2010) Identifying shared genetic structure patterns among pacific northwest forest taxa: insights from use of visualization tools and computer simulations. PLOS ONE, 5, e13683.
Miller, S.A., Dykes, D.D. & Polesky, H.F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16, 1215.
Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, USA.
Payseur, B.A. & Rieseberg, L.H. (2016) A genomic perspective on hybridization and speciation. Molecular Ecology, 25, 23372360.
Pennisi, E. (2016) Shaking up the tree of life. Science, 354, 817821.
Petit, R.J., El Mousadik, A. & Pons, O. (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844855.
Pritchard, J.K., Stephens, M., & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945959.
Ramasamy, R.K., Ramasamy, S., Bindroo, B.B. & Naik, V.G. (2014) STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus, 3, 431.
Raymond, M. & Rousset, F. (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248249.
Rhymer, J.M. & Simberloff, D. (1996) Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27, 83109.
Rieseberg, L.H., Archer, M.A. & Wayne, R.K. (1999) Transgressive segregation, adaptation and speciation. Heredity, 83, 363372.
Rousset, F. (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources, 8, 103106.
Runge, C.A., Martin, T.G., Possingham, H.P., Willis, S.G. and Fuller, R.A. (2014) Conserving mobile species. Frontiers in Ecology and the Environment, 12, 395402.
Runge, C.A., Gallo-Cajiao, E., Carey, M.J., Garnett, S.T., Fuller, R.A. & McCormack, P.C. (2017) Coordinating domestic legislation and international agreements to conserve migratory species: a case study from Australia. Conservation Letters, 10, 765772.
Safner, T., Miller, M.P., McRae, B., Fortin, M.J. & Manel, S. (2011) Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics. International Journal of Molecular Science, 12, 865889.
Soltis, P. & Soltis, D.E. (2009) The role of hybridization in plant speciation. Annual Review of Plant Biology, 60, 561588.
Southwood, T.R.E. & Henderson, A. (2000) Ecological Methods. 3rd edition. Blackwell Science Ltd, Oxford, UK.
Templeton, A.R., Shaw, K., Routman, E. & Davis, S.K. (1990) The genetic consequences of habitat fragmentation. Annals of the Missouri Botanical Garden, 77, 1327.
Todesco, M., Pascual, M.A., Owens, G.L., Ostevik, K.L., Moyers, B.T., Hübner, S. et al. (2016) Hybridization and extinction. Evolutionary Applications, 9, 892908.
Toews, D.P.L. & Brelsford, A. (2012) The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 16, 39073930.
Triggs, S.J. & Daugherty, C.H. (1996). Conservation and genetics of New Zealand parakeets. Bird Conservation International, 6, 89101.
Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. & Shipley, P. (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535538.
Vijay, N., Bossu, C.M., Poelstra, J.W., Weissensteiner, M.H., Suh, A., Kryukov, A.P. & Wolf, J.B.W. (2016) Evolution of heterogeneous genome differences across multiple contact zones in a crow species complex. Nature Communications, 7, 13195.
Waits, L.P., Luikart, G. & Taberlet, P. (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology, 10, 249256.
Walkinshaw, L.H. (1973) Cranes of the World. Winchester Press, New York, USA.
Wood, T.C. & Krajewski, C. (1996) Mitochondrial sequence variation among the subspecies of Sarus Crane (Grus antigone). The Auk, 113, 655–633.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed