Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T21:26:56.569Z Has data issue: false hasContentIssue false

Asset allocation for a DC pension plan with minimum guarantee constraint and hidden Markov regime-switching

Published online by Cambridge University Press:  21 November 2022

Liuling Luo
Affiliation:
School of Science, Wuhan University of Technology, Wuhan 430070, China. E-mail: luoliuling1604@whut.edu.cn; pxch@whut.edu.cn
Xingchun Peng
Affiliation:
School of Science, Wuhan University of Technology, Wuhan 430070, China. E-mail: luoliuling1604@whut.edu.cn; pxch@whut.edu.cn

Abstract

This paper is devoted to the study of the asset allocation problem for a DC pension plan with minimum guarantee constraint in a hidden Markov regime-switching economy. Suppose that four types of assets are available in the financial market: a risk-free asset, a zero-coupon bond, an inflation-indexed bond and a stock. The expected return rate of the stock depends on unobservable economic states, and the change of states is described by a hidden Markov chain. In addition, the CIR process is used to describe the evolution of the nominal interest rate. The contribution rate is also assumed to be stochastic. The goal of investment management is to minimize the convex risk measure of the terminal wealth in excess of the minimum guarantee constraint. First, we transform the partially observable optimization problem into the one with complete information using the Wonham filtering technique and deal with the minimum guarantee constraint by constructing auxiliary processes. Furthermore, we derive the optimal investment strategy by the BSDE approach. Finally, some numerical results are presented to illustrate the impacts of some important parameters on investment behaviors.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artzner, P., Delbaen, F., Heath, D., & Eber, J. (1999). Coherent measures of risk. Mathematical Finance 9(3): 203228.CrossRefGoogle Scholar
Battocchio, P. & Menoncin, F. (2004). Optimal pension management in a stochastic framework. Insurance: Mathematics and Economics 34(1): 7995.Google Scholar
Boulier, J.F., Huang, S., & Taillard, G. (2001). Optimal management under stochastic interest rates: The case of a protected defined contribution pension fund. Insurance: Mathematics and Economics 28(2): 173189.Google Scholar
Broadie, M. & Kaya, Ö. (2006). Exact simulation of stochastic volatility and other affine jump diffusion processes. Operations Research 54(2): 217231.CrossRefGoogle Scholar
Chen, Z., Li, Z.F., Zeng, Y., & Sun, J.Y. (2017). Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk. Insurance: Mathematics and Economics 75: 137150.Google Scholar
Cox, J.C., Ingersoll, J.E., & Ross, S.A. (1985). A theory of the term structure of interest rates. Econometrica 53(2): 385407.CrossRefGoogle Scholar
Deelstra, G., Grasselli, M., & Koehl, P.F. (2003). Optimal investment strategies in the presence of a minimum guarantee. Insurance: Mathematics and Economics 33(1): 189207.Google Scholar
Delbaen, F., Peng, S., & Rosazza Gianin, E. (2008). Representation of the penalty function of a dynamic convex risk measure. Technical Report. Torino: Princeton Conference.Google Scholar
Delbaen, F., Peng, S., & Rosazza Gianin, E. (2010). Representation of the penalty term of dynamic concave utilities. Financial Stochastics 14: 449472.CrossRefGoogle Scholar
De Scheemaekere, X. (2008). Risk indifference pricing and backward stochastic differential equations. CEB working paper No.08/027. Technical Report. Brussels, Belgium: Solvay Business School.Google Scholar
Duffie, D. & Kan, R. (1996). A yield-factor model of interest rates. Mathematical Finance 6(4): 379406.CrossRefGoogle Scholar
Elliott, R.J., Moore, J.B., & Aggoun, L (1995). Hidden Markov models: Estimation and control. New York: Springer.Google Scholar
Elliott, R.J. & Siu, T.K. (2011). A BSDE approach to a risk-based optimal investment of an insurer. Automatica 47(2): 14731486.CrossRefGoogle Scholar
Föllmer, H. & Schied, A. (2002). Convex measures of risk and trading constraints. Finance and Stochastics 6(4): 429447.CrossRefGoogle Scholar
Frittelli, M. & Rosazza Gianin, E. (2002). Putting order in risk measures. Journal of Banking and Finance 26(7): 14731486.CrossRefGoogle Scholar
Gao, J.W. (2008). Stochastic optimal control of DC pension funds. Insurance: Mathematics and Economics 42(3): 11591164.Google Scholar
Guan, G.H. & Liang, Z.X. (2014). Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility framework. Insurance: Mathematics and Economics 57: 5866.Google Scholar
Hamilton, J.D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57(2): 357384.CrossRefGoogle Scholar
Han, N.W. & Hung, M.W. (2012). Optimal asset allocation for DC pension plans under inflation. Insurance: Mathematics and Economics 51(1): 172181.Google Scholar
Kallianpur, G (1980). Stochastic filtering theory. New York: Springer.CrossRefGoogle Scholar
Korn, R., Siu, T.K., & Zhang, A.H. (2011). Asset allocation for a DC pension fund under regime switching environment. European Actuarial Journal 1(2): 361377.CrossRefGoogle Scholar
Liang, Z.X. & Song, M. (2015). Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information. Insurance: Mathematics and Economics 65: 6676.Google Scholar
Liptser, R.S. & Shiryaev, A.N (2001). Statistics of random processes: II. Applications. Berlin, Heidelberg: Springer.Google Scholar
Markowitz, H. (1952). Portfolio selection. Journal of Finance 7(1): 7791.Google Scholar
Meng, H. & Siu, T.K. (2014). Risk-based asset allocation under Markov-modulated pure jump processes. Stochastic Analysis and Applications 32(2): 191206.CrossRefGoogle Scholar
Milstein, G.N., Platen, E., & Schurz, H. (1998). Balanced implicit methods for stiff stochastic systems. SIAM Journal on Numerical Analysis 35(3): 10101019.CrossRefGoogle Scholar
Peng, X.C. & Hu, Y.J. (2016). Risk-based optimal investment and proportional reinsurance of an insurer with hidden regime switching. Acta Mathematicae Applicatae Sinica, English Series 32(3): 755770.CrossRefGoogle Scholar
Rieder, U. & Bäuerle, N. (2005). Portfolio optimization with unobservable Markov-modulated drift process. Journal of Applied Probability 42(2): 362378.CrossRefGoogle Scholar
Shen, Y. & Siu, T.K. (2018). A risk-based approach for asset allocation with a defaultable share. Risks 6(1): 114.CrossRefGoogle Scholar
Siu, T.K. (2012). A BSDE approach to risk-based asset allocation of pension funds with regime switching. Annals of Operations Research 201(1): 449473.CrossRefGoogle Scholar
Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics 5(2): 177188.CrossRefGoogle Scholar
Wang, P., Li, Z.F., & Sun, J.Y. (2021). Robust portfolio choice for a DC pension plan with inflation risk and mean-reverting risk premium under ambiguity. Optimization 70(1): 191224.CrossRefGoogle Scholar
Zhang, A.H. & Ewald, C.O. (2010). Optimal investment for a pension fund under inflation risk. Mathematical Methods of Operations Research 71(2): 353369.CrossRefGoogle Scholar
Zhu, D., Xie, Y., Ching, W.K., & Siu, T.K. (2016). Optimal portfolios with maximum Value-at-Risk constraint under a hidden Markovian regime-switching model. Automatica 74: 194205.CrossRefGoogle Scholar