No CrossRef data available.
Published online by Cambridge University Press: 10 October 2024
Let  $X, Y$ be two locally compact Hausdorff spaces and
$X, Y$ be two locally compact Hausdorff spaces and  $T:C_0(X)\rightarrow C_0(Y)$ be a standard surjective ɛ-norm-additive map, i.e.
$T:C_0(X)\rightarrow C_0(Y)$ be a standard surjective ɛ-norm-additive map, i.e. \begin{equation*}\big|\|T(f)+T(g)\|-\|f+g\|\big|\leq \varepsilon,\;{\rm for\;all}\; f, g\in C_0(X).\end{equation*}
\begin{equation*}\big|\|T(f)+T(g)\|-\|f+g\|\big|\leq \varepsilon,\;{\rm for\;all}\; f, g\in C_0(X).\end{equation*}
Then there exist a homeomorphism  $\varphi:Y\rightarrow X$ and a continuous function
$\varphi:Y\rightarrow X$ and a continuous function  $\lambda:Y\rightarrow\lbrace\pm1\rbrace$ such that
$\lambda:Y\rightarrow\lbrace\pm1\rbrace$ such that \begin{equation*}|T(f)(y)-\lambda(y)f(\varphi(y))|\leq\frac{3}{2}\varepsilon,\;{\rm for\;all}\;y\in Y,\;f\in C_0(X).\end{equation*}
\begin{equation*}|T(f)(y)-\lambda(y)f(\varphi(y))|\leq\frac{3}{2}\varepsilon,\;{\rm for\;all}\;y\in Y,\;f\in C_0(X).\end{equation*}
The estimate ‘ $\frac{3}{2}\varepsilon$’ is optimal. And this result can be regarded as a new nonlinear extension of the Banach–Stone theorem.
$\frac{3}{2}\varepsilon$’ is optimal. And this result can be regarded as a new nonlinear extension of the Banach–Stone theorem.
 $C_0(Y)$ onto
$C_0(Y)$ onto  $C_0(X)$, Pacific J. Math. 35 (2) (1970), 307–312.CrossRefGoogle Scholar
$C_0(X)$, Pacific J. Math. 35 (2) (1970), 307–312.CrossRefGoogle Scholar $C^*$-algebras, J. Operator Theory 88 (2) (2022), 365–406.Google Scholar
$C^*$-algebras, J. Operator Theory 88 (2) (2022), 365–406.Google Scholar