Skip to main content
×
×
Home

Weak-Type Boundedness of the Fourier Transform on Rearrangement Invariant Function Spaces

  • Santiago Boza (a1) and Javier Soria (a2)
Abstract

We study several questions about the weak-type boundedness of the Fourier transform ℱ on rearrangement invariant spaces. In particular, we characterize the action of ℱ as a bounded operator from the minimal Lorentz space Λ(X) into the Marcinkiewicz maximal space M(X), both associated with a rearrangement invariant space X. Finally, we also prove some results establishing that the weak-type boundedness of ℱ, in certain weighted Lorentz spaces, is equivalent to the corresponding strong-type estimates.

Copyright
References
Hide All
1.Ariño, M. A. and Muckenhoupt, B., Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727735.
2.Benedetto, J. J. and Heinig, H. P., Weighted Fourier inequalities: new proofs and generalizations, J. Fourier Anal. Appl. 9 (2003), 137.
3.Bennett, C. and Sharpley, R., Interpolation of operators (Academic Press, Boston, 1988).
4.Brandolini, L. and Colzani, L., Fourier transform, oscillatory multipliers and evolution equations in rearrangement invariant function spaces, Colloq. Math. 71(2) (1996), 273286.
5.Carro, M. J., Pick, L., Soria, J. and Stepanov, V., On embeddings between classical Lorentz spaces, Math. Inequal. Appl. 4 (2001), 397428.
6.Halperin, I., Function spaces, Canad. J. Math. 5 (1953), 273288.
7.Jodeit, M. Jr and Torchinsky, A., Inequalities for Fourier transforms, Studia Math. 37 (1971), 245276.
8.Lorentz, G. G., Bernstein polynomials (University of Toronto Press, Toronto, 1953).
9.Sawyer, E., Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145158.
10.Sinnamon, G., Interpolation of spaces defined by the level function (ed. Igari, S.), ICM-90 Satellite Conference Proceedings, Harmonic Analysis, pp. 190193 (Springer-Verlag, Tokyo, 1991).
11.Sinnamon, G., Spaces defined by the level function and their duals, Studia Math. 111 (1994), 1952.
12.Sinnamon, G., The level function in rearrangement invariant spaces, Publ. Mat. 45 (2001), 175198.
13.Sinnamon, G., The Fourier transform in weighted Lorentz spaces, Publ. Mat. 47 (2003), 329.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Edinburgh Mathematical Society
  • ISSN: 0013-0915
  • EISSN: 1464-3839
  • URL: /core/journals/proceedings-of-the-edinburgh-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 135 *
Loading metrics...

* Views captured on Cambridge Core between 8th June 2018 - 21st August 2018. This data will be updated every 24 hours.