To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The identification of complex organic molecules, COMs, in inter- and circumstellar gas phase environments is steadily increasing. The formation of such COMs takes largely place on the icy dust grains, as has been shown in recent laboratory studies. Until now solid state features of smaller molecular species have been directly identified in these environments. The presented work on acetaldehyde (CH3CHO), ethanol (CH3CH2OH), and dimethyl ether (CH3OCH3) in different astronomically relevant ice environments and for temperatures in the range 15 to 160 Kelvin, provides the necessary tools to guide or interpret astronomical observations, specifically for upcoming James Webb Space Telescope observations.
Polycyclic aromatic hydrocarbons (PAH) and their derivatives, including protonated and cationic species, are suspected to be carriers of the unidentified infrared (UIR) emission bands observed from the galactic and extragalactic sources. We investigated the infrared (IR) spectra of protonated nonplanar PAHs: corannulene (C20H10) and sumanene (C21H12), that are regarded as a fragments of a fullerene,C60. The protonated corannulene H+ C20H10 and sumanene H+ C21H12 were produced in seperate experiments by bombarding a mixture of corannulene/sumanene and para-hydrogen (p-H2) with electrons during deposition at 3.2 K. During maintenance of the electron-bombarded matrix in darkness the intensities of IR lines of protonated corannulene decreased because of neutralization by electrons that were slowly released from the trapped sites whereas the hydrogenated species were produced. The observed lines were classified into several groups according to their responses to darkness and secondary irradiation at 365 nm/385 nm LEDs. Spectral assignments were derived based on a comparison of the observed spectra with those predicted with the B3PW91/6-311+ +G(2d,2p) method. The observed IR spectrum of hub-H+ C20H10, the most stable protonated isomer, resembles several bands of the Class-A UIR bands.
While gas-phase reactions and surface reactions on bare carbonaceous or siliceous dust grains contribute to cosmic chemistry, the energetic processing of cosmic ices via photochemistry and radiation chemistry is thought to be the dominant mechanism for the cosmic synthesis of prebiotic molecules. Because most previous laboratory astrochemical studies have used light sources that produce >10 eV photons and are, therefore, capable of ionizing cosmic ice analogs, discerning the role of photochemistry vs. radiation chemistry in astrochemistry is challenging. By using a source whose photon energy does not exceed 8 eV, we have studied ammonia and methanol cosmic ice reactions attributable solely to photochemistry. We compare these results to those obtained in the same ultrahigh vacuum chamber with 1 keV electrons which instead initiate radiation chemistry in cosmic ice analogs.
Potential routes to the formation of urea were investigated using electronic structure methods. The most likely pathways involve either the reaction of the formamide and amine radicals or involve protonated isocyanic acid as a starting point.
Methanol (CH3OH) and hydroxyl (OH) radicals are two species abundant in cold and dense molecular clouds which are important for the chemistry of the interstellar medium (ISM). CH3OH is a well-known starting point for the formation of more complex organic molecules (COMs) in these molecular clouds. Thus, the reactivity of CH3OH in the gas-phase with OH may play a crucial role in the formation of species as complex as prebiotic molecules in the ISM and reliable rate coefficients should be used in astrochemical models describing low temperature reaction networks.
The pore structure of vapour deposited ASW is poorly understood, despite its importance to fundamental processes such as grain chemistry, cooling of star forming regions, and planet formation. We studied structural changes of vapour deposited D2O on intra-molecular to 30 nm length scales at temperatures ranging from 18 to 180 K and observed enhanced mobility from 100 to 150 K. An Arrhenius type model describes the loss of surface area and porosity with a common set of kinetic parameters. The low activation energy (428 K) is commensurate with van der Waals forces between nm-scale substructures in the ice. Our findings imply that water porosity will always change with time, even at low temperatures.
Thermal desorption experiments of Formamide (NH2CHO) and methylamine (CH3NH2) were performed in LERMA-Cergy laboratory to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces, and to understand their interaction with water ice. We found that more than 95 % of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate, and is released into the gas phase with a desorption energy distribution Edes = (7460 – 9380) K, measured with the best-fit pre-exponential factor A=1018 s-1. Whereas, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes =3850-8420 K) is measured with the best-fit pre-exponential factor A=1012s-1. A fraction of solid methylamine, of about 0.15 monolayer diffuses through the water ice surface towards the HOPG substrate, and desorbs later, with higher binding energies (5050-8420 K), which exceed that of the crystalline water ice (Edes =4930 K), calculated with the same pre-exponential factor A=1012 s-1.
The surfaces of most of the atmosphereless solar system bodies are referred to as regolith or layers of usually loosely connected fragmentary debris, produced by meteorite impacts. Measurement of light scattered from such surfaces provide information about the composition and structure of the surface. In the present work, the effect of porosity and particle size, on reflectance is studied for regolith like samples. For modelling the experimental data Hapke 2008 is used and found to be in good agreement with laboratory data. From the present study, it can be concluded that the physical properties of a regolith, such as porosity, particle size etc are effectively represented by albedo.
The laboratories at the Centre for Astrochemical Studies at the Max Planck Institute for Extraterrestrial Physics are devoted to spectroscopic studies of molecules of astrophysical relevance. In particular, in this paper we report on the two experiments that can produce and probe unstable molecules, like radicals and ions.
The desorption of volatile molecules from dust grains in cold dense clouds is crucial for the chemical inventory in the various stages of cloud collapse. In this work we investigate the desorption of N2, CO, CH4 and CO2 from surfaces of hydrogenated amorphous carbon (HAC), which, according to IR observations, is one of the main components of interstellar dust.
The rate coefficients, k(T= 11.7 – 64.4 K), for the gas-phase reaction between OH radicals and acetone, CH3C(O) CH3, have been measured using the pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique, the most suitable one to cool down gases below the freezing point without gas condensation. The experimental k(T) was found to increase as temperature was lowered and is several orders of magnitude higher for low temperature than k(300 K). No pressure dependence of k(20 K) and k(64 K) was observed, while k(50 K) at the largest gas density is twice higher than the average values found at lower gas densities. The obtained values of k(11.7 K) and k(21.1 K) were 2.45’10-10 and 1.39’10-10 cm3 molecule-1 s-1, respectively.
Stellar winds of Asymptotic Giant Branch (AGB) stars are responsible for the production of ∼85% of the gas molecules in the interstellar medium (ISM), and yet very few of the gas phase rate coefficients under the relevant conditions (10 – 3000 K) needed to model the rate of production and loss of these molecules in stellar winds have been experimentally measured. If measured at all, the value of the rate coefficient has often only been obtained at room temperature, with extrapolation to lower and higher temperatures using the Arrhenius equation. However, non-Arrhenius behavior has been observed often in the few measured rate coefficients at low temperatures. In previous reactions studied, theoretical simulations of the formation of long-lived pre-reaction complexes and quantum mechanical tunneling through the barrier to reaction have been utilized to fit these non-Arrhenius behaviours of rate coefficients.
Reaction rate coefficients that were predicted to produce the largest change in the production/loss of Complex Organic Molecules (COMs) in stellar winds at low temperatures were selected from a sensitivity analysis. Here we present measurements of rate coefficients using a pulsed Laval nozzle apparatus with the Pump Laser Photolysis - Laser Induced Fluorescence (PLP-LIF) technique. Gas flow temperatures between 30 – 134 K have been produced by the University of Leeds apparatus through the controlled expansion of N2 or Ar gas through Laval nozzles of a range of Mach numbers between 2.49 and 4.25.
Reactions of interest include those of OH, CN, and CH with volatile organic species, in particular formaldehyde, a molecule which has been detected in the ISM. Kinetics measurements of these reactions at low temperatures will be presented using the decay of the radical reagent. Since formaldehyde and the formal radical (HCO) are potential building blocks of COMs in the interstellar medium, low temperature reaction rate coefficients for their production and loss can help to predict the formation pathways of COMs observed in the interstellar medium.
We present ALMA observations of four different molecular species in showcasing their potential as tracers of physical and chemical conditions in planet forming Herbig Ae disks.
The Belgian Repository of fundamental Atomic data and Stellar Spectra (BRASS) aims to provide one of the largest systematic and homogeneous quality assessment to date of literature atomic data required for stellar spectroscopy. By comparing state-of-the-art synthetic spectrum calculations with extremely high-quality observed benchmark spectra, we have critically evaluated fundamental atomic data, such as line wavelengths and oscillator strengths, for thousands of astrophysically-relevant transitions found in the literature and across several major atomic data repositories. These proceedings provide a short overview of the BRASS project to date, highlighting our recent efforts to investigate and quality-assess the atomic literature data pertaining to over a thousand atomic transitions present in FGK-type stellar spectra. BRASS provides all quality assessed data, theoretical spectra, and observed spectra in a new interactive database under development at brass.sdf.org.
In cosmic environments, polycyclic aromatic hydrocarbons (PAHs) strongly interact with vacuum ultraviolet (VUV) photons emitted by young stars. Trapped PAH cations ranging in size from 30 to 48 carbon atoms were irradiated by tunable synchrotron light (DESIRS beamline at SOLEIL). Their ionization and dissociation cross sections were determined and compared with TD-DFT computed photoabsorption cross sections. Evidence for radiative cooling is reported.
We propose a role for CO ice mantles in ion recombination reactions, and demonstrate how the subsequent fall in the degree of gas phase ionization decreases the time required for cloud collapse under gravity by a factor of 5-6. Experimental results demonstrate that CO films prepared at cryo-temperatures spontaneously harbour electric fields immediately upon growth. Using what is known from observations about prestellar cloud conditions in the ISM, we explain how this phenomenon can lead to an acceleration in ion recombination reaction rates. The result is a pathway for cloud collapse to occur before cloud disruption by supernova remnants.
The VAMDC Consortium intended to find a way for users to cite the datasets accessed through the infrastructure. The Research Data Alliance Data citation working group provided the researchers and data centres communities with a recommendation to identify and cite dynamic data. This recommendation perfectly matched the VAMDC needs: the proposed solution relies on a query centric view and the set-up of a Query Store. Data should be stored in a versioned time-stamped manner and accessed through queries. The Query Store we implemented for VAMDC is interlinked with Zenodo. Since Zenodo is indexed in OpenAIRE and since the latter implements Scholix, VAMDC indirectly implements Scholix via its Query Store. The paper outlines the successes and limitations of the above approach.
In dense interstellar clouds that are shielded from high-energy radiation (e.g., UV photons or cosmic rays), H-atom addition and abstraction reactions that take place on grain surfaces play principal roles in the synthesis or decomposition of complex organic molecules (COMs). These reactions are extensively investigated with laboratory experiments by bombarding astrophysical analogue ices with a beam of low-temperature H atoms. Here we demonstrate that, although 2-4 K solid para-H2 does not represent a typical environment of the surface of interstellar grains, para-H2 matrix isolation combined with IR spectroscopy is a complementary tool to sensitively detect astrochemical hydrogenation and dehydrogenation processes.
Increasing observational evidence shows that a non-negligible fraction of the cosmic carbon is locked into macromolecules like Polycyclic Aromatic Hydrocarbons (PAHs). Interstellar PAHs live in extreme environments where there are processed by energetic photons (UV and X-rays) and by ions and electrons accelerated in hot shocked plasma and arising from cosmic rays. It is therefore important to quantify the capability of PAHs to survive under these extreme conditions and to determine the structural modifications induced by such energetic processing. I will present some novel results on this topic, focusing on the bombardment by ions and electrons in interstellar shocks. This work shows the importance of pairing an appropriate physical description of the interaction between target and projectiles with updated laboratory measurements of the relevant physical parameters. The results from physical modeling allowed to derive updated astronomical lifetimes for PAHs.
Laboratory experiments are essential to support the interpretation of astronomical observations and space mission data. Here we present a new experimental setup to characterize in the Vis-MIR range in both reflection and transmission modes astrophysically-relevant frozen volatiles deposited at low temperature and exposed to ion bombardment.