To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recent laboratory studies have shown that PAH cations dehydrogenate to give charged molecules consisting of only carbon atoms. Our experiments using ion-trap time-of-flight mass spectrometry show that a key group of photodissociation fragments from the coronene cation $({{\rm{C}}_{24}}{\rm{H}}_{12}^ + )$ are carbon clusters of ${\rm{C}}_n^ +$ composition. Density functional theory calculations shed light onto potential dissociation pathways leading up to the main ${\rm{C}}_{11}^ +$ and ${\rm{C}}_{12}^ +$ clusters, and highlight the importance of pentagon formations in the carbon backbone of the precursor molecule in generating certain fragments.
The role of H2 in forming interstellar complex organics is still not clear due to the high activation energies required for “non-energetic” association reactions. In this work, we investigated the potential contribution of H2 to the hydrogenated species (HnNCO) formation on dust grains when the “energetic” processing is involved. The goal is to test whether an additional hydrogenation pathway is possible upon UV irradiation of a CO:H2 ice mixture. It is proposed that the electronically excited carbon monoxide (CO*) induced by UV-photons can react with a ground-state H2 to form HCO, ultimately enhancing the production of COMs in ice mantle.
Observations of the mid-infrared (mid-IR, 3-15 μm) spectra of photo-dissociation regions reveal ubiquitous, broad and intense emission bands, the aromatic infrared bands (AIBs), attributed to polycyclic aromatic hydrocarbons (PAHs). Studies of the AIBs showed spectral variations (e.g. in the band positions) between different astrophysical objects, or even within single object, thanks to hyperspectral images. The James Webb Space Telescope (JWST) will allow to get further spectral and spatial details compared to former space observatories. This will come with large data sets, which will require specific tools in order to perform efficient scientific analysis.
We propose in this study a method based on blind signal separation to reduce the analysis of such large data set to that of a small number of elementary spectra, spectrally representative of the data set and physically interpretable as the spectra of populations of mid-IR emitters. The robustness and fastness of the method are improved compared to former algorithms. It is tested on a ISO-SWS data set, which approaches the best the characteristics of JWST data, from which four elementary spectra are extracted, attributed to cationic, neutral PAHs, evaporating very small grains and large and ionized PAHs.
Amorphous Mg-Fe silicates are produced from microwave-dried sol-gels and their thermal crystallisation is studied via in situ synchrotron X-ray powder diffraction. Mg-pyroxene crystallised to forsterite, enstatite and cristobalite. The inclusion of 10% Fe formed only forsterite at much higher temperature, while pure Mg-olivine crystallised at a lower temperature than Mg-pyroxene. Cristobalite is observed as a high-temperature crystallite in the pure-Mg compositions. Crystallisation activation energies are derived and discussed in relation to protoplanetary disks.
The Titan Haze Simulation (THS) experiment is a unique experimental platform that allows to simulate Titan’s complex atmospheric chemistry at low Titan-like temperature by generating a plasma discharge in the stream of a plasma jet expansion. Both gas and solid phase products are generated and can be analyzed using different in-situ and ex-situ diagnostics. Here, we present an overall description of the work accomplished with the THS in the last 10 years, our current research efforts, and the important implications for the analysis of Cassini’s returned data and preparation for future Titan missions.
HD 66051 is an eclipsing and spectroscopic double-lined binary (SB2), hosting two chemically peculiar stars: a highly peculiar B star as primary and an Am star as secondary. The investigation of the new high-resolution UVES spectrum of HD 66051 allowed us to decide on the chemical peculiarity type of both components with more reliability. An analysis of TESS photometric time series data will further specify the physical parameters of the stars and the orbital parameters of the system.
PAH clusters are one candidate species for the interstellar “very small grains” or “VSGs”, i.e., dust grains small enough to be stochastically heated and contribute to the aromatic infrared emission bands (AIBs). This possibility motivated laboratory experiments on the infrared spectroscopy of PAH clusters using matrix isolation spectroscopy. The spectral shifts due to PAH clustering in argon matrices provide clues for the AIB contribution from PAH clusters in the interstellar medium. Here we review results from a number of small PAH species, extrapolation to the much larger PAHs believed to be present in the interstellar medium, and the implications for a PAH cluster contribution to the VSG population.
Complex organic molecules (COMs) may have played a role in the formation of life in the early Earth (Herbst & van Dishoeck (2009)). Here we present the formation of NH2CHO and CH3CHO upon vacuum-ultraviolet (VUV) irradiation of CO:NH3 and CO:CH4 ice mixtures, simulating the UV processing of interstellar ices in the interior of dense clouds. We have found that the conversion from ${\rm{N}}{{\rm{H}}_{\dot 2}}$ radicals to NH2CHO is 4–15 times higer than that from ${\rm{N}}{{\rm{H}}_{\dot 3}}$ to CH3CHO, probably due to the competing formation of larger hydrocarbons in the latter case.
Experimental and theoretical studies have shown that Complex Organic Molecules (COMs) can be formed on icy dusty grains in molecular clouds and protoplanetary disks. The number of astronomical detections of solid COMs, however, is very limited. With the upcoming launch of the James Webb Space Telescope (JWST) this should change, but in order to identify solid state features of COMs, accurate laboratory data are needed. Here we present high resolution (0.5 cm–1) infrared ice spectra of acetone (C3H6O) and methyl formate (HCOOCH3), two molecules already identified in astronomical gas phase surveys, whose interstellar synthesis is expected to follow solid state pathways.
UV irradiation of ices plays an important role in different inter- and circumstellar environments. Following the absorption of UV photons in ice, two processes compete: photodesorption and photodissociation/chemistry. From an experimental point of view it is very hard to discriminate between photodesorption and photodissociation (and resulting photochemistry). In this work we present our first attempts to distinguish both effects. The performance is demonstrated on the example of CO-ice, known not to dissociate upon UV irradiation, and CH4-ice that does fragment.
We have succeeded in synthesizing organics, ‘Quenched Nitrogen-included Carbonaceous Composite (QNCC)’, via plasma chemical vapor deposition (CVD) method, whose infrared spectral properties reproduce the characteristics of the unidentified infrared (UIR) bands observed around classical novae. Past studies have shown that the UIR bands observed around novae appear somewhat differently from those observed in other astrophysical environment and are predominantly characterized by the presence of a broad 8μm feature. The remarkable similarity between the infrared properties of QNCC and the UIR bands in novae indicates that QNCC should be considered as a strong candidate of the carriers of the UIR bands in novae. Finally, we have started a space exposure experiment of QNCC aiming to explore the evolutional link between the QNCC and the insoluble organic molecule (IOM) in carbonaceous condrite and, thus, to infer the origins of organics in our solar system.
Polycyclic Aromatic Hydrocarbon (PAHs) molecules are attracting much attention in the astrophysical and astrochemical communities because of their ubiquitous presence in space due to their ability to survive in the harsh environmental conditions of the interstellar medium (ISM). The objective of this work is to provide gas phase, high-resolution spectroscopic data on the electronic and vibronic transitions of PAHs and their nitrogenated derivatives measured in astrophysically relevant conditions.
We describe recent simulations of interstellar and laboratory ices using the 3-D, off-lattice microscopic Monte Carlo kinetics model MIMICK. The simulations indicate that interstellar ices are capable of achieving porous structures, dependent on physical conditions. In some cases, such structures may be filled as they are formed, by mobile/volatile species such as H2 that become trapped in those structures. Simulations of laboratory water-ice deposition using MIMICK suggest that an additional non-thermal diffusion mechanism is required to reproduce the high degree of porosity achieved for experimental ices at temperatures less than ~80 K. This mechanism is related to the deposition process itself. Simulations of temperature-programmed desorption of mixed molecular ices are ongoing. The interstellar models have also recently been developed to incorporate a full gas-phase chemistry, coupled with the grain-surface chemistry.
We assess the accuracy of various computational methods for obtaining infrared (IR) spectra of nanosized silicate dust grains directly from their atomistic structure and atomic motions. First, IR spectra for a selection of small nanosilicate clusters with a range of sizes and chemical compositions are obtained within the harmonic oscillator approximation employing density functional theory (DFT) based quantum chemical calculations. To check if anharmonic effects play a significant role in the IR spectra of these nanoclusters, we further obtain their IR spectra from finite temperature DFT-based ab initio molecular dynamics (AIMD). Finally, we also study the effect of temperature on the broadening of the obtained IR spectra peaks in larger nanosilicate grains with a range of crystallinities. In this case, less computationally costly classical molecular dynamics simulations are necessary due to the large number of atoms involved. Generally, we find that although DFT-based methods are more accurate, surprisingly good IR spectra can also be obtained from classical molecular dynamics calculations.
A characterisation of the collision properties between icy interstellar grains is crucial to understand planet formation. Here, we measure collision properties on a reference elastic system to evaluate the inelasticity of ice particles collisions. We propose upgrades to correct for some experimental biases and to investigate water evaporation as possible explanation for the energy loss during collision.
Episodic accretion is an important process in the evolution of young stars and their surroundings. A consequence of an episodic accretion event is a luminosity burst, which heats the protostellar environment and has a long lasting impact on the chemical evolution of the disk and envelope of young stars. We present a new model for the chemistry of episodic accretion based on the 2D radiation thermo-chemical disk code ProDiMo. We discuss the impact of an episodic accretion burst on the chemical evolution of CO and its observables. Furthermore we present a model for the outbursting source V883 Ori where we fitted available observational data to get an accurate physical structure that allows for a detailed study of the chemistry.
The cross sections for rotational inelastic collisions between atoms and a molecular anion can be very large, if the anion has a dipole moment. This makes molecular anions very efficient in cooling atomic gases. We address rotational inelastic collisions of Helium atoms with the molecular anion C2N–. Here we present preliminary calculations of the potential energy surface.
HD 163296 is a young star surrounded by a planet-forming disk that shows clear signatures of dust gaps and rings; likely an indication of ongoing planet formation. We use the radiation thermochemical disk code ProDiMo to investigate the impact of dust/gas gaps on the temperature, chemistry and observables. Furthermore, we model high spatial resolution gas and dust observation of HD 163296 (ALMA/DSHARP). Our first results indicate that features in the observed radial intensity profile of the 12CO line are a consequence of the dust gaps and do not require gas depletion. Those preliminary results indicate that self-consistent modelling of the gas (chemistry, heating/cooling) and dust is necessary to accurately infer the degree of gas depletion within dust gaps. Such information is crucial to understand the processes that generate the disk substructure and their relation to planet formation.
By virtue of the physical, chemical and dynamical characteristics of asteroids, researchers gain insight into the formation and evolution of our Solar system. Since these objects do not undergo any changes, or the changes during the Solar system evolution are insignificant, we are certain they carry important information regarding the formation of our planetary system and its evolution. Knowing the spectral class of an asteroid is crucial for determining its chemical properties. In our work the spectral classification was done on several asteroids by comparing their spectra with laboratory spectra. We determined spectral types of the asteroids by the overall shapes of the spectra between 450 nm and 700 nm. Increasing the number of asteroids with known rotation period, shapes and spectra enriches the asteroid database of physical and dynamical characteristics of asteroid population.