Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T13:16:09.264Z Has data issue: false hasContentIssue false

Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrödinger equations with periodic potentials

Published online by Cambridge University Press:  13 January 2020

Van Duong Dinh*
Affiliation:
Laboratoire Paul Painlevé UMR 8524, Université de Lille CNRS, 59655 Villeneuve d'Ascq Cedex, France Department of Mathematics, HCMC University of Pedagogy, 280 An Duong Vuong, Ho Chi Minh, Vietnam (contact@duongdinh.com)

Abstract

We consider the minimizing problem for the energy functional with prescribed mass constraint related to the fractional non-linear Schrödinger equation with periodic potentials. Using the concentration-compactness principle, we show a complete classification for the existence and non-existence of minimizers for the problem. In the mass-critical case, under a suitable assumption of the potential, we give a detailed description of blow-up behaviour of minimizers once the mass tends to a critical value.

Type
Research Article
Copyright
Copyright © The Author(s) 2020. Published by The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bahouri, H., Chemin, J. Y. and Danchin, R., Fourier analysis and nonlinear partial differential equations, A Series of Comprehensive Studies in Mathematics, vol. 343, (Berlin: Springer, 2011).CrossRefGoogle Scholar
2Bensouilah, A., Dinh, V. D. and Zhu, S.. On stability and instability of standing waves for the nonlinear Schrödinger equation with an inverse-square potential. J. Math. Phys. 104 (2018), 101505.Google Scholar
3Cabré, X. and Sire, Y.. Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 2353.CrossRefGoogle Scholar
4Cabré, X. and Sire, Y.. Nonlinear equations for fractional Laplacians, II: existence, uniqueness, and qualitative properties of solutions. Trans. Amer. Math. Soc. 367 (2015), 911941.CrossRefGoogle Scholar
5Caffarelli, L. and Silvestre, L.. An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32 (2007), 12451260.CrossRefGoogle Scholar
6Caffarelli, L., Salsa, S. and Silvestre, L.. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171 (2008), 425461.CrossRefGoogle Scholar
7Cafferalli, L., Roquejoffre, J. M. and Sire, Y.. Variational problems with free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12 (2010), 11511179.CrossRefGoogle Scholar
8Cazenave, T., Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10 (Providence, RI: American Mathematical Society, 2003).Google Scholar
9Cho, Y. and Ozawa, T.. Sobolev inequalities with symmetry. Commun. Contemp. Math. 11 (2009), 355365.CrossRefGoogle Scholar
10Di Nezza, E., Palatucci, G. and Valdinoci, E.. Hitchhiker's guide to the fractional Sobolev spaces. Bull. des Sci. Math. 136 (2012), 521573.Google Scholar
11Du, M., Tian, L., Wang, J. and Zhang, F.. Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials. Proc. Roy. Soc. Edinburgh Sect. A 149 (2018), 617653.Google Scholar
12Felmer, P., Quaas, A. and Tan, J.. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 12371262.Google Scholar
13Feng, B.. Ground states for the fractional Schrödinger equation. Electron. J. Differ. Equ. 127 (2013), 111.Google Scholar
14Frank, R. and Lenzmann, E.. Uniqueness and nondegeneracy of ground states for (−Δ)s + QQ α+1 = 0 in ℝ. Acta. Math. 210 (2013), 261318.CrossRefGoogle Scholar
15Frank, R., Lenzmann, E. and Silvestre, L.. Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69 (2016), 16711726.Google Scholar
16Fröhlich, J., Jonsson, G. and Lenzmann, E.. Boson stars as solitary waves. Commun. Math. Phys. 274 (2007), 130.CrossRefGoogle Scholar
17Guo, Y. and Seiringer, R.. On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 104 (2014), 141156.CrossRefGoogle Scholar
18Guo, H. and Zhou, H. S.. A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential. Appl. Math. Lett. 87 (2019), 3541.Google Scholar
19Guo, Y., Zeng, X. and Zhou, H. S.. Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with righ-shaped potentials. Ann. Inst. Henri Poincaré Non Lineaire Anal. 33 (2016), 809828.CrossRefGoogle Scholar
20Guo, Y., Wang, Z. Q., Zeng, X. and Zhou, H. S.. Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity 31 (2018), 957.CrossRefGoogle Scholar
21Guo, Y., Luo, Y. and Yang, W., Refined mass concentration of rotating Bose-Einstein condensates with attractive interactions, Preprint 2019. arXiv:1901.09619.Google Scholar
22He, Q. and Long, W.. The concentration of solutions to a fractional Schrödinger equation. Z. Angew. Math. Phys. 67: 9 (2016).CrossRefGoogle Scholar
23Kirkpatrick, K., Lenzmann, E. and Staffilani, G.. On the continuum limit for discrete NLS with long-range lattice interactions. Commun. Math. Phys. 317 (2013), 563591.CrossRefGoogle Scholar
24Laskin, N.. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268 (2000), 298304.CrossRefGoogle Scholar
25Laskin, N.. Fractional Schrödinger equations. Phys. Rev. E 66 (2002), 056108.CrossRefGoogle Scholar
26Lions, P. L.. The concentration-compactness principle in the calculus of variations. The locally compact case: Part 1. Ann. Inst. Henri Poincaré 1 (1984), 109145.CrossRefGoogle Scholar
27Lions, P. L.. The concentration-compactness principle in the calculus of variations. The locally compact case: Part 2. Ann. Inst. Henri Poincaré 1 (1984), 223283.Google Scholar
28Ionescu, A. D. and Pusateri, F.. Nonlinear fractional Schrödinger equations in one dimensions. J. Funct. Anal. 266 (2014), 139176.CrossRefGoogle Scholar
29Maeda, M.. On the symmetry of the ground states of nonlinear Schrödinger equation with potential. Adv. Nonlinear Stud. 10 (2010), 895925.CrossRefGoogle Scholar
30Park, Y. J.. Fractional Polya-Szegö inequality. J. Chungcheong Math. Soc. 24 (2011), 267271.Google Scholar
31Phan, T. V.. Blow-up profile of Bose-Einstein condensate with singular potentials. J. Math. Phys. 58 (2017), 072301.Google Scholar
32Sire, Y. and Valdinoci, E.. Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result. J. Funct. Anal. 256 (2009), 18421864.CrossRefGoogle Scholar
33Wang, Q. and Zhao, D.. Existence and mass concentration of 2D attractive Bose-Einstein condensates with periodic potentials. J. Differ. Equ. 262 (2017), 26842704.CrossRefGoogle Scholar
34Zhang, J.. Stability of attractive Bose-Einstein condensates. J. Stat. Phys. 101 (2000), 731746.CrossRefGoogle Scholar