Hostname: page-component-5b777bbd6c-cp4x8 Total loading time: 0 Render date: 2025-06-19T08:28:44.576Z Has data issue: false hasContentIssue false

Sharp estimates for Gowers norms on discrete cubes

Published online by Cambridge University Press:  16 June 2025

Adrian Beker
Affiliation:
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, Zagreb, 10000, Croatia (adrian.beker@math.hr)
Tonći Crmarić*
Affiliation:
Department of Mathematics, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, 21000, Croatia (tcrmaric@pmfst.hr) (corresponding author)
Vjekoslav Kovač
Affiliation:
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, Zagreb, 10000, Croatia (vjekovac@math.hr)
*
*Corresponding author.

Abstract

We study optimal dimensionless inequalities

\begin{equation*} \|f\|_{\textrm{U}^k} \leqslant \|f\|_{\ell^{p_{k,n}}} \end{equation*}

that hold for all functions $f\colon\mathbb{Z}^d\to\mathbb{C}$ supported in $\{0,1,\ldots,n-1\}^d$ and estimates

\begin{equation*} \|\mathbb{1}_A\|_{\textrm{U}^k}^{2^k}\leqslant |A|^{t_{k,n}} \end{equation*}

that hold for all subsets A of the same discrete cubes. A general theory, analogous to the work of de Dios Pont, Greenfeld, Ivanisvili, and Madrid, is developed to show that the critical exponents are related by $p_{k,n} t_{k,n} = 2^k$. This is used to prove the three main results of the article:

  • an explicit formula for $t_{k,2}$, which generalizes a theorem by Kane and Tao,

  • two-sided asymptotic estimates for $t_{k,n}$ as $n\to\infty$ for a fixed $k\geqslant2$, which generalize a theorem by Shao, and

  • a precise asymptotic formula for $t_{k,n}$ as $k\to\infty$ for a fixed $n\geqslant2$.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adell, J. A., Lekuona, A. and Yaming, Y.. Sharp bounds on the entropy of the Poisson law and related quantities. IEEE Trans. Inform. Theory. 56 (2010), 22992306. https://doi.org/10.1109/TIT.2010.2044057CrossRefGoogle Scholar
Anderson, I.. Combinatorics of finite sets (Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1987).Google Scholar
Borwein, P. B., Borwein, J. M., Plouffe, S.. Inverse symbolic calculator, 1995. https://wayback.cecm.sfu.ca/projects/ISC/ISCmain.htmlGoogle Scholar
Byszewski, J., Konieczny, J., and Müllner, C.. Gowers norms for automatic sequences. Discrete Anal 4 (2023), 62.Google Scholar
Chang, S. C. and Weldon, E. J.. Coding for T-user multiple-access channels. IEEE Trans. Inform. Theory 25 (1979), 684691. https://doi.org/10.1109/TIT.1979.1056109CrossRefGoogle Scholar
de Dios Pont, J., Greenfeld, R., Ivanisvili, P. and Madrid, J.. Additive energies on discrete cubes. Discrete Anal. 13 (2023), 16. https://doi.org/10.19086/da.84737Google Scholar
Durcik, P. and Kovač, V.. A Szemerédi-type theorem for subsets of the unit cube. Anal. PDE 15 (2022), 507549. https://doi.org/10.2140/apde.2022.15.507CrossRefGoogle Scholar
Eisner, T. and Tao, T.. Large values of the Gowers-Host-Kra seminorms. J. Anal. Math. 117 (2012), 133186. https://doi.org/10.1007/s11854-012-0018-2CrossRefGoogle Scholar
Erdos, P.. On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc. 51 (1945), 898902. https://doi.org/10.1090/S0002-9904-1945-08454-7CrossRefGoogle Scholar
Fan, A. and Konieczny, J.. On uniformity of q-multiplicative sequences. Bull. Lond. Math. Soc. 51 (2019), 466488. https://doi.org/10.1112/blms.12245CrossRefGoogle Scholar
Flajolet, P.. Singularity analysis and asymptotics of Bernoulli sums. Theoret. Comput. Sci. 215 (1999) 371381. https://doi.org/10.1016/S0304-39759800220-5.CrossRefGoogle Scholar
Gowers, W. T.. A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8 (1998), 529551. https://doi.org/10.1007/s000390050065CrossRefGoogle Scholar
Gowers, W. T.. A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11 (2001), 465588. https://doi.org/10.1007/s00039-001-0332-9CrossRefGoogle Scholar
Hegyvári, N.. Some remarks on the distribution of additive energy. Results Math. 78 (2023), 233, 9. https://doi.org/10.1007/s00025-023-02010-5CrossRefGoogle Scholar
Jacquet, P. and Szpankowski, W.. Entropy computations via analytic de-Poissonization. IEEE Trans. Inform. Theory 45 (1999), 10721081. https://doi.org/10.1109/18.761251CrossRefGoogle Scholar
Kadelburg, Z., Djukić, D., Lukić, M., and Matić, I.. Inequalities of Karamata, Schur and Muirhead, and some applications. The Teaching of Mathematics 8 (2005), 3145.Google Scholar
Kane, D. and Tao, T.. A bound on partitioning clusters. Electron. J. Combin. 24 (2017), 2.31, 13. https://doi.org/10.37236/6797CrossRefGoogle Scholar
Karamata, J.. Sur une inégalité relative aux fonctions convexes. Publ. Math. Univ. Belgrade 1 (1932), 145148Google Scholar
Knessl, C.. Integral representations and asymptotic expansions for Shannon and Renyi entropies. Appl. Math. Lett. 9659 (1998), 6974. https://doi.org/10.1016/S0893-00013-5.CrossRefGoogle Scholar
Kovač, V.. On binomial sums, additive energies, and lazy random walks. J. Math. Anal. Appl. 528 (2023), 127510, 13. https://doi.org/10.1016/j.jmaa.2023.127510CrossRefGoogle Scholar
Lubell, D.. A short proof of Sperner’s lemma. J. Combinatorial Theory 1 (1966), 299.Google Scholar
Wolfram Research Inc. Mathematica, Version 13.0.1 (2022).Google Scholar
Schoen, T. and Ilya, D. S.. Higher moments of convolutions. J. Number Theory 133 (2013), 16931737. https://doi.org/10.1016/j.jnt.2012.10.010CrossRefGoogle Scholar
Shao, X.. Additive energies of subsets of discrete cubes. Proceedings of the Royal Society of Edinburgh: Section A Mathematics (2024), 122. https://doi.org/10.1017/prm.2024.126Google Scholar
Shkredov, I.. Energies and structure of additive sets. Electron. J. Combin. 21 (2014), 3.44, 53. https://doi.org/10.37236/4369Google Scholar
Tao, T. and Van, V.. Additive combinatorics. Of Cambridge Studies in Advanced Mathematics, Vol. 105 (Cambridge University Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511755149Google Scholar