Hostname: page-component-cb9f654ff-plnhv Total loading time: 0.001 Render date: 2025-08-29T09:29:36.863Z Has data issue: false hasContentIssue false

Ill-posedness issue on the Oldroyd-B model in the critical Besov spaces

Published online by Cambridge University Press:  29 August 2025

Jinlu Li
Affiliation:
School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, China (lijinlu@gnnu.edu.cn)
Yanghai Yu
Affiliation:
School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, China (yuyanghai214@sina.com)
Weipeng Zhu
Affiliation:
School of Mathematics, Foshan University, Foshan, Guangdong 528000, China (mathzwp2010@163.com)

Abstract

It was proved in [11, J. Funct. Anal., 2020] that the Cauchy problem for some Oldroyd-B model is well-posed in $\dot{B}^{d/p-1}_{p,1}(\mathbb{R}^d) \times \dot{B}^{d/p}_{p,1}(\mathbb{R}^d)$ with $1\leq p \lt 2d$. In this paper, we prove that the Cauchy problem for the same Oldroyd-B model is ill-posed in $\dot{B}^{d/p-1}_{p,r}(\mathbb{R}^d) \times \dot{B}^{d/p}_{p,r}(\mathbb{R}^d)$ with $1\leq p\leq \infty$ and $1 \lt r\leq\infty$ due to the lack of continuous dependence of the solution.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bahouri, H., Chemin, J. -Y. and Danchin, R.. Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften. (Springer, Heidelberg, 2011).10.1007/978-3-642-16830-7CrossRefGoogle Scholar
Bourgain, J. and Pavlović, N.. Ill-posedness of the Navier-Stokes equations in a critical space in 3D. J. Funct. Anal. 255 (2008), 22332247.10.1016/j.jfa.2008.07.008CrossRefGoogle Scholar
Chemin, J. -Y. and Masmoudi, N.. About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33 (2001), 84112.10.1137/S0036141099359317CrossRefGoogle Scholar
Chen, J. and Wan, R.. Ill-posedness for the compressible Navier–Stokes equations with the velocity in L 6 framework. J. Inst. Math. Jussieu. 18 (2019), 829854.10.1017/S1474748017000238CrossRefGoogle Scholar
Chen, Q. and Hao, X.. Global well-posedness in the critical Besov spaces for the incompressible Oldroyd-B model without damping mechanism. J. Math. Fluid Mech. 21 (2019), , pp.10.1007/s00021-019-0446-1CrossRefGoogle Scholar
Chen, Q. and Miao, C.. Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal. 68 (2008), 19281939.10.1016/j.na.2007.01.042CrossRefGoogle Scholar
Chen, Q., Miao, C. and Zhang, Z.. On the ill-posedness of the compressible Navier–Stokes equations in the critical Besov spaces. Rev. Mat. Iberoam. 31 (2015), 13751402.10.4171/rmi/872CrossRefGoogle Scholar
Chen, Q., Nie, Y. and Ye, W.. Sharp ill-posedness for the non-resistive MHD equations in Sobolev spaces. J. Funct. Anal. 286 (2024), .10.1016/j.jfa.2023.110302CrossRefGoogle Scholar
Constantin, P. and Kliegl, M.. Note on global regularity for two dimensional Oldroyd-B fluids stress. Arch. Ration. Mech. Anal. 206 (2012), 725740.10.1007/s00205-012-0537-0CrossRefGoogle Scholar
Constantin, P., Wu, J., Zhao, J. and Zhu, Y.. High Reynolds number and high Weissenberg number Oldroyd-B model with dissipation. J. Evol. Equ. 21 (2021), 27872806.10.1007/s00028-020-00616-8CrossRefGoogle Scholar
De Anna, F. and Paicu, M.. The Fujita-Kato theorem for some Oldroyd-B model. J. Funct. Anal. 279 (2020), .10.1016/j.jfa.2020.108761CrossRefGoogle Scholar
Elgindi, T. M. and Liu, J.. Global wellposedness to the generalized Oldroyd type models in $\mathbb{R}^3$. J. Differ. Equ. 259 (2015), 19581966.10.1016/j.jde.2015.03.026CrossRefGoogle Scholar
Elgindi, T. M. and Rousset, F.. Global regularity for some Oldroyd-B type models. Commun. Pure Appl. Math. 68 (2015), 20052021.10.1002/cpa.21563CrossRefGoogle Scholar
Fang, D. and Zi, R.. Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J. Math. Anal. 48 (2016), 10541084.10.1137/15M1037020CrossRefGoogle Scholar
Fernández-Cara, E., Guillén, F. and Ortega, R.. Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind. Handbook of Numerical Analysis, Vol. 8, (North Holland, Amsterdam, 2002)Google Scholar
Guillopé, C. and Saut, J. -C.. Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15 (1990), 849869.10.1016/0362-546X(90)90097-ZCrossRefGoogle Scholar
Huang, J., Liu, Q. and Zi, R.. Global existence and decay rates of solutions to the Oldroyd-B model with stress tensor diffusion. J. Differ. Equ. 389 (2024), 3889.10.1016/j.jde.2024.01.016CrossRefGoogle Scholar
Iwabuchi, T. and Ogawa, T.. Ill-posedness for the compressible Navier–Stokes equations under barotropic condition in limiting Besov spaces. J. Math. Soc. Japan. 74 (2022), 353394.10.2969/jmsj/81598159CrossRefGoogle Scholar
Lei, Z., Liu, C. and Zhou, Y.. Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188 (2008), 371398.10.1007/s00205-007-0089-xCrossRefGoogle Scholar
Lin, F. H., Liu, C. and Zhang, P.. On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58 (2005), 14371471.10.1002/cpa.20074CrossRefGoogle Scholar
Lions, P. L. and Masmoudi, N.. Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. B. 21 (2000), 131146.10.1142/S0252959900000170CrossRefGoogle Scholar
Nie, Y. and Yuan, J.. Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces. Nonlinear Anal. 196 (2020), .10.1016/j.na.2020.111782CrossRefGoogle Scholar
Oldroyd, J.. Non Newtonian effects in steady motion of some idealized elasticoviscous liquids. Proc. R. Soc. Edinb. A. 245 (1958), 278297.Google Scholar
Wang, B.. Ill-posedness for the Navier-Stokes equations in critical Besov spaces $\dot{B}^{-1}_{\infty,q}$. Adv. Math. 268 (2015), 350372.10.1016/j.aim.2014.09.024CrossRefGoogle Scholar
Wang, P., Wu, J., Xu, X. and Zhong, Y.. Sharp decay estimates for Oldroyd-B model with only fractional stress tensor diffusion. J. Funct. Anal. 282 (2022), .10.1016/j.jfa.2021.109332CrossRefGoogle Scholar
Wu, J. and Zhao, J.. Global regularity for the generalized incompressible Oldroyd-B model with only stress tensor dissipation in critical Besov spaces. J. Differ. Equ. 316 (2022), 641686.10.1016/j.jde.2022.01.059CrossRefGoogle Scholar
Yoneda, T.. Ill-posedness of the 3D-Navier-Stokes equations in a generalized Besov space near BMO−1. J. Funct. Anal. 258 (2010), 33763387.10.1016/j.jfa.2010.02.005CrossRefGoogle Scholar
Zhu, Y.. Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J. Funct. Anal. 274 (2018), 20392060.10.1016/j.jfa.2017.09.002CrossRefGoogle Scholar
Zi, R., Fang, D. and Zhang, T.. Global solution to the incompressible Oldroyd-B model in the critical Lp framework: the case of the non-small coupling parameter. Arch. Ration. Mech. Anal. 213 (2014), 651687.10.1007/s00205-014-0732-2CrossRefGoogle Scholar