Skip to main content Accessibility help
×
Home

Dietary intake in the early years and its relationship to BMI in a bi-ethnic group: the Born in Bradford 1000 study

  • Samuel Mahoney (a1), Maria Bryant (a2), Pinki Sahota (a3) and Stuart Barber (a1)

Abstract

Objective

To assess relationships between dietary intake at age 12, 18 and 36 months and BMI Z-scores at age 36 months in a bi-ethnic group.

Design

A prospective cohort study comparing cross-sectional and longitudinal data. Exposures included dietary intake at 12, 18 and 36 months (FFQ) with an outcome of BMI Z-score at age 36 months.

Setting

Born in Bradford 1000 study, Bradford, UK.

Subjects

Infants at age 12 months (n 722; 44 % White British, 56 % Pakistani), 18 months (n 779; 44 % White British, 56 % Pakistani) and 36 months (n 845; 45 % White British, 55 % Pakistani).

Results

Diet at age 12 months was not associated with BMI Z-score at age 36 months. Higher consumption of vegetables at 18 and 36 months was associated with a lower BMI Z-score at 36 months (model coefficient (95 % CI): −0·20 (−0·36, −0·03) and −0·16 (−0·31, −0·02), respectively). Higher consumption of high-fat chips at age 36 months was associated with a lower BMI Z-score at age 36 months (−0·16 (−0·32, 0·00)). Overall, White British children had higher 36-month BMI Z-scores than Pakistani children (adjusted mean difference (95 % CI): 0·21 (0·02, 0·41)).

Conclusions

Our findings indicate that dietary intake at 18 and 36 months was somewhat related to BMI Z-score at age 36 months and suggest the importance of early interventions aimed at establishing healthy eating behaviours.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary intake in the early years and its relationship to BMI in a bi-ethnic group: the Born in Bradford 1000 study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary intake in the early years and its relationship to BMI in a bi-ethnic group: the Born in Bradford 1000 study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary intake in the early years and its relationship to BMI in a bi-ethnic group: the Born in Bradford 1000 study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email samuelmahoney.sm@gmail.com

References

Hide All
1. World Health Organization (2000) Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. WHO Technical Report Series no. 894. Geneva: WHO.
2. Wang, Y & Lobstein, T (2006) Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes 1, 1125.
3. World Health Organization (2014) Facts and figures on childhood obesity. http://www.who.int/end-childhood-obesity/facts/en/ (accessed June 2016).
4. Public Health England (2015) Child obesity. http://www.noo.org.uk/NOO_about_obesity/child_obesity (accessed February 2017).
6. Ong, KK & Loos, RJ (2006) Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr 95, 904908.
7. Druet, C, Stettler, N, Sharp, S et al. (2012) Prediction of childhood obesity by infancy weight gain: an individual‐level meta‐analysis. Paediatr Perinat Epidemiol 26, 1926.
8. Health and Social Care Information Centre (2013) National Child Measurement Programme: England, 2012/13 School Year. http://www.hscic.gov.uk/catalogue/PUB13115/nati-chil-means-prog-eng-2012-2013-rep.pdf (accessed June 2016).
9. Saxena, S, Ambler, G, Cole, TJ et al. (2004) Ethnic group differences in overweight and obese children and young people in England: cross sectional survey. Arch Dis Child 89, 3036.
10. Razak, F, Anand, SS, Shannon, H et al. (2007) Defining obesity cut points in a multiethnic population. Circulation 115, 21112118.
11. Owen, CG, Whincup, PH, Orfei, L et al. (2005) Is body mass index before middle age related to coronary heart disease risk in later life? Evidence from observational studies. Int J Obes (Lond) 33, 866867.
12. Reilly, JJ & Kelly, J (2011) Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond) 35, 891898.
13. Juonala, M, Magnussen, CG, Berenson, GS et al. (2011) Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med 365, 18761885.
14. Barker, DJ (2007) Obesity and early life. Obes Rev 8, Suppl. 1, 4549.
15. Birch, L, Savage, JS & Ventura, A (2007) Influences on the development of children’s eating behaviours: from infancy to adolescence. Can J Diet Pract 68, issue 1, s1s56.
16. Moorcroft, KE, Marshall, JL & McCormick, FM (2011) Association between timing of introducing solid foods and obesity in infancy and childhood: a systematic review. Matern Child Nutr 7, 326.
17. Lobstein, T, Baur, L & Uauy, R (2004) Obesity in children and young people: a crisis in public health. Obes Rev 5, Suppl. 1, 485.
18. Wright, J, Small, N, Raynor, P et al. (2012) Cohort profile: the Born in Bradford multi-ethnic family cohort study. Int J Epidemiol 42, 978991.
19. Bryant, M, Santorelli, G, Fairley, L et al. (2012) Design and characteristics of a new birth cohort, to study the early origins and ethnic variation of childhood obesity: the BiB1000 study. Longit Life Course Stud 4, 119135.
20. Marriott, LD, Inskip, HM, Borland, SE et al. (2009) What do babies eat? Evaluation of a food frequency questionnaire to assess the diets of infants aged 12 months. Public Health Nutr 12, 967972.
21. Sahota, P, Gatenby, LA, Greenwood, DC et al. (2016) Ethnic differences in dietary intake at age 12 and 18 months: the Born in Bradford 1000 Study. Public Health Nutr 19, 114122.
22. Fox, MK, Pac, S, Devaney, B et al. (2004) Feeding infants and toddlers study: what foods are infants and toddlers eating? J Am Diet Assoc 104, 2230.
23. Sharma, S, Kolahdooz, F, Butler, L et al. (2013) Assessing dietary intake among infants and toddlers 0–24 months of age in Baltimore, Maryland, USA. Nutr J 12, 52.
24. Sheehy, C, McNeill, G, Masson, L et al. (2008) Survey of sugar intake among children in Scotland: Summary report. http://www.food.gov.uk/sites/default/files/multimedia/pdfs/publication/surveyofsugarscotland0308.pdf (accessed June 2016).
25. Public Health England & Food Standards Agency (2014) NDNS: Results from Years 1 to 4 (combined). http://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-results-from-years-1-to-4-combined-of-the-rolling-programme-for-2008-and-2009-to-2011-and-2012 (accessed February 2017).
26. City of Bradford Metropolitan District Council (2012) 2011 Census results. http://www.bradford.gov.uk/bmdc/government_politics_and_public_administration/2011_census. (accessed June 2016).
27. World Health Organization (2017) The Z-score or standard deviation classification system. http://www.who.int/nutgrowthdb/about/introduction/en/index4.html (accessed February 2017).
28. Fairley, L, Petherick, ES, Howe, LD et al. (2013) Describing differences in weight and length growth trajectories between white and Pakistani infants in the UK: analysis of the Born in Bradford birth cohort study using multilevel linear spline models. Arch Dis Child 98, 274279.
29. Mebrahtu, TF, Feltbower, RG, Petherick, ES et al. (2015) Growth patterns of white British and Pakistani children in the Born in Bradford cohort: a latent growth modelling approach. J Epidemiol Community Health 69, 368373.
30. Nightingale, CM, Rudnicka, AR, Owen, CG et al. (2011) Patterns of body size and adiposity among UK children of South Asian, black African-Caribbean and white European origin: Child Heart And health Study in England (CHASE Study). Int J Epidemiol 40, 3344.
31. Yates, A, Edman, J & Aruguete, M (2004) Ethnic differences in BMI and body/self-dissatisfaction among Whites, Asian subgroups, Pacific Islanders, and African-Americans. J Adolesc Health 34, 300307.
32. Deurenberg, P, Yap, M & Van Staveren, WA (1998) Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord 22, 11641171.
33. Ambrosini, GL (2014) Childhood dietary patterns and later obesity: a review of the evidence. Proc Nutr Soc 73, 137146.
34. Lin, BH & Morrison, RM (2002) Higher fruit consumption linked with lower body mass index. Food Rev 25, 2832.
35. Lakkakula, AP, Zanovec, M, Silverman, L et al. (2008) Black children with high preferences for fruits and vegetables are at less risk of being at risk of overweight or overweight. J Am Diet Assoc 108, 19121915.
36. Shields, M (2006) Overweight and obesity among children and youth. Health Rep 17, 2742.
37. Thompson, D, Ferry, RJ, Cullen, KW et al. (2016) Improvement in fruit and vegetable consumption associated with more favorable energy density and nutrient and food group intake, but not kilocalories. J Acad Nutr Diet 116, 14431449.
38. World Health Organization (2003) Global Strategy on Diet, Physical Activity and Health. http://www.who.int/dietphysicalactivity/fruit/index1.html (accessed November 2017).
40. Bangor University (2017) Eating more fruit and veg displaces foods high in fat, sugar and salt in children’s diets. http://www.caer.bangor.ac.uk/research/displace-fat-sugar-salt.php.en. (accessed November 2017).
41. Pei, Z, Flexeder, C, Fuertes, E et al. (2014) Food intake and overweight in school-aged children in Germany: results of the GINIplus and LISAplus studies. Ann Nutr Metab 64, 6070.
42. Santorelli, G, Fairley, L, Petherick, ES et al. (2014) Ethnic differences in infant feeding practices and their relationship with BMI at 3 years of age – results from the Born in Bradford birth cohort study. Br J Nutr 111, 18911897.
43. Danielzik, S, Czerwinski-Mast, M, Langnäse, K et al. (2004) Parental overweight, socioeconomic status and high birth weight are the major determinants of overweight and obesity in 5–7 y-old children: baseline data of the Kiel Obesity Prevention Study (KOPS). Int J Obes Relat Metab Disord 28, 14941502.
44. Fox, MK, Dodd, AH, Wilson, A et al. (2009) Association between school food environment and practices and body mass index of US public school children. J Acad Nutr Diet 109, 108117.
45. Millar, L, Rowland, B, Nichols, M et al. (2014) Relationship between raised BMI and sugar sweetened beverage and high fat food consumption among children. Obesity (Silver Spring) 22, E96E103.
46. Chambers, L (2016) Complementary feeding: vegetables first, frequently and in variety. Nutr Bull 41, 142146.
47. Rose, D (2013) 11 proven ways to get kids to eat more vegetables. http://www.summertomato.com/11-proven-ways-to-get-kids-to-eat-more-vegetables (accessed June 2017).
48. Caton, SJ, Ahern, SM, Remy, E et al. (2013) Repetition counts: repeated exposure increases intake of a novel vegetable in UK pre-school children compared to flavour–flavour and flavour–nutrient learning. Br J Nutr 109, 20892097.
49. Nestle (2017) Ten healthy eating tips for kids. http://www.nestle.com/nutrition-health-wellness/health-wellness-tips/healthy-habits-kids (accessed April 2017).
50. Dixon, B, Pena, MM & Taveras, EM (2012) Lifecourse approach to racial/ethnic disparities in childhood obesity. Adv Nutr 3, 7382.
51. Emmett, PM & Jones, LR (2015) Diet, growth, and obesity development throughout childhood in the Avon Longitudinal Study of Parents and Children. Nutr Rev 73, Suppl. 3, 175206.
52. Hughes, AR, Sherriff, A, Lawlor, DA et al. (2011) Timing of excess weight gain in the Avon Longitudinal Study of Parents and Children (ALSPAC). Pediatrics 127, 730736.
53. Robinson, SM, Marriott, LD, Crozier, SR et al. (2009) Variations in infant feeding practice are associated with body composition in childhood: a prospective cohort study. J Clin Endocrinol Metab 94, 27992805.
54. Emmett, P (2009) Dietary assessment in the Avon Longitudinal Study of Parents and Children. Eur J Clin Nutr 63, Suppl. 1, S38S44.
55. Leventakou, V, Georgiou, V, Chatzi, L et al. (2015) Relative validity of an FFQ for pre-school children in the mother–child ‘Rhea’ birth cohort in Crete, Greece. Public Health Nutr 18, 421427.
56. Cade, J, Thompson, R, Burley, V et al. (2002) Development, validation and utilisation of food-frequency questionnaires – a review. Public Health Nutr 5, 567587.
57. de Hoog, ML, Kleinman, KP, Gillman, MW et al. (2014) Racial/ethnic and immigrant differences in early childhood diet quality. Public Health Nutr 17, 13081317.
58. Cespedes, A (2016) The disadvantages of BMI. http://www.livestrong.com/article/32791-disadvantages-bmi/ (accessed September 2016).
59. Smithers, LG, Brazionis, L, Golley, RK et al. (2012) Associations between dietary patterns at 6 and 15 months of age and sociodemographic factors. Eur J Clin Nutr 66, 658666.
60. Robinson, S, Marriott, L, Poole, J et al. (2007) Dietary patterns in infancy: the importance of maternal and family influences on feeding practice. Br J Nutr 98, 10291037.
61. Northstone, K & Emmett, P (2013) The associations between feeding difficulties and behaviours and dietary patterns at 2 years of age: the ALSPAC cohort. Matern Child Nutr 9, 533542.
62. Mikkila, V, Rasanen, L, Raitakari, OT et al. (2005) Consistent dietary patterns identified from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. Br J Nutr 93, 923931.
63. Dennison, BA, Rockwell, HL & Baker, SL (1997) Excess fruit juice consumption by preschool-aged children is associated with short stature and obesity. Pediatrics 99, 1522.
64. Collison, KS, Zaidi, MZ, Subhani, SN et al. (2010) Sugar-sweetened carbonated beverage consumption correlates with BMI, waist circumference, and poor dietary choices in school children. BMC Public Health 10, 234.
65. Ludwig, DS, Peterson, KE & Gortmaker, SL (2001) Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet 357, 505508.
66. Taveras, EM, Berkey, CS, Rifas-Shiman, SL et al. (2005) Association of consumption of fried food away from home with body mass index and diet quality in older children and adolescents. Pediatrics 116, e518e524.
67. Freedman, DS, Khan, LK, Serdula, MK et al. (2006) Racial and ethnic differences in secular trends for childhood BMI, weight, and height. Obesity (Silver Spring) 14, 301308.
68. Ogden, CL, Carroll, MD, Curtin, LR et al. (2010) Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA 303, 242249.
69. Fox, MK, Condon, E, Briefel, RR et al. (2010) Food consumption patterns of young preschoolers: are they starting off on the right path? J Am Diet Assoc 110, Suppl. 12, S52S59.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Mahoney et al. supplementary material
Table S1

 Word (27 KB)
27 KB

Dietary intake in the early years and its relationship to BMI in a bi-ethnic group: the Born in Bradford 1000 study

  • Samuel Mahoney (a1), Maria Bryant (a2), Pinki Sahota (a3) and Stuart Barber (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.