Hostname: page-component-76c49bb84f-lvrpm Total loading time: 0 Render date: 2025-07-09T22:54:36.390Z Has data issue: false hasContentIssue false

Advancing UAV swarm autonomy with ARCog-NET for task allocation, path planning, and formation control

Published online by Cambridge University Press:  07 July 2025

Gabryel Silva Ramos*
Affiliation:
Federal Center for Technological Education Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, Brazil
Milena Faria Pinto
Affiliation:
Federal Center for Technological Education Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, Brazil
Diego Barreto Haddad
Affiliation:
Federal Center for Technological Education Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, Brazil
*
Corresponding author: Gabryel Silva Ramos; Email: gabryelsr@gmail.com

Abstract

Most research on UAV swarm architectures remains confined to simulation-based studies, with limited real-world implementation and validation. In order to mitigate this issue, this research presents an improved task allocation and formation control system within ARCog-NET (Aerial Robot Cognitive Architecture), aimed at deploying autonomous UAV swarms as a unified and scalable solution. The proposed architecture integrates perception, planning, decision-making, and adaptive learning, enabling UAV swarms to dynamically adjust path planning, task allocation, and formation control in response to evolving mission demands. Inspired by artificial intelligence and cognitive science, ARCog-NET employs an Edge-Fog-Cloud (EFC) computing model, where edge UAVs handle real-time data acquisition and local processing, fog nodes coordinate intermediate control, and cloud servers manage complex computations, storage, and human supervision. This hierarchical structure balances real-time autonomy at the UAV level with high-level optimization and decision-making, creating a collective intelligence system that automatically fine-tunes decision parameters based on configurable triggers. To validate ARCog-NET, a realistic simulation framework was developed using SITL (Software-In-The-Loop) with actual flight controller firmware and ROS-based middleware, enabling high-fidelity emulation. This framework bridges the gap between virtual simulations and real-world deployments, allowing evaluation of performance in environmental monitoring, search and rescue, and emergency communication network deployment. Results demonstrate superior energy efficiency, adaptability, and operational effectiveness compared to conventional robotic swarm methodologies. By dynamically optimizing data processing based on task urgency, resource availability, and network conditions, ARCog-NET bridges the gap between theoretical swarm intelligence models and real-world UAV applications, paving the way for future large-scale deployments.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ramos, G. S., Pinto, M. F., Coelho, F. O., Honório, L. M. and Haddad, D. B., “Hybrid methodology based on computational vision and sensor fusion for assisting autonomous uav on offshore messenger cable transfer operation,” Robotica 40(8), 27862814 (2022).10.1017/S026357472100196XCrossRefGoogle Scholar
Pinto, M. F., Melo, A., Marcato, A. and Urdiales, C., “Case-based reasoning approach applied to surveillance system using an autonomous unmanned aerial vehicle,” In: 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE) (2017), Edinburgh, UK, 2017, IEEE Xplore, pp. 1324–1329, doi: 10.1109/ISIE.2017.8001437.CrossRefGoogle Scholar
Ramos, G. S., Haddad, D. B., Barros, A. L., de Melo Honorio, L. and Pinto, M. F., “EKF-based vision-assisted target tracking and approaching for autonomous UAV in offshore mooring tasks,” IEEE Journal on Miniaturization for Air and Space Systems 3(2), 5366 (2022).10.1109/JMASS.2022.3195660CrossRefGoogle Scholar
Rodin, C. D., de Lima, L. N., de Alcantara Andrade, F. A., Haddad, D. B., Johansen, T. A. and Storvold, R., “Object classification in thermal images using convolutional neural networks for search and rescue missions with unmanned aerial systems,” In: 2018 International Joint Conference on Neural Networks (IJCNN) (2018), Rio de Janeiro, Brazil, 2018, IEEE Xplore, pp. 1–8, doi: 10.1109/IJCNN.2018.8489465.CrossRefGoogle Scholar
Berger, G. S., Teixeira, M., Cantieri, A., Lima, J., Pereira, A. I., Valente, A., de Castro, G. G. and Pinto, M. F., “Cooperative heterogeneous robots for autonomous insects trap monitoring system in a precision agriculture scenario,” Agriculture 13(2), 239 (2023).10.3390/agriculture13020239CrossRefGoogle Scholar
Pugliese, L. D. P., Guerriero, F. and Macrina, G., “Using drones for parcels delivery process,” international Conference on Industry 4.0 and Smart Manufacturing (ISM 2019), Procedia Manufacturing 42, 488497 (2020). [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S2351978920305928.Google Scholar
Green, D. R., Hagon, J. J., Gomez, C. and Gregory, B. J., “Chapter 21 - Using Low-Cost Uavs for Environmental Monitoring, Mapping, and Modelling: Examples From the Coastal Zone,” In: Coastal Management (Krishnamurthy, R., Jonathan, M., Srinivasalu, S. and Glaeser, B., eds.) (Academic Press, 2019) pp. 465501. [Online]. Available at: https://www.sciencedirect.com/science/article/pii/B9780128104736000224.10.1016/B978-0-12-810473-6.00022-4CrossRefGoogle Scholar
Manfreda, S., Dvorak, P., Mullerova, J., Herban, S., Vuono, P., Justel, J. J. A. and Perks, M., “Assessing the accuracy of digital surface models derived from optical imagery acquired with unmanned aerial systems,” Drones 3(1), 15 (2019). [Online]. Available at: https://www.mdpi.com/2504-446X/3/1/15.10.3390/drones3010015CrossRefGoogle Scholar
Tahir, A., Boling, J., Haghbayan, M.-H., Toivonen, H. T. and Plosila, J., “Swarms of unmanned aerial vehicles — a survey,” J. Ind. Inf. Integr. 16, 100106 (2019). [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S2452414X18300086.Google Scholar
Alqudsi, Y. and Makaraci, M., “Uav swarms: Research, challenges, and future directions,” J. Eng. Appl. Sci. 72(1), 01 (2025).10.1186/s44147-025-00582-3CrossRefGoogle Scholar
Luthra, M., “Aerial robot swarms: A review,” IAES Int. J. Robot. Autom. (IJRA) 12(2), 137145 (2023). [Online]. Available at: https://ijra.iaescore.com/index.php/IJRA/article/view/20532.10.11591/ijra.v12i2.pp137-145CrossRefGoogle Scholar
Abdelkader, M., Güler, S., Jaleel, H. and Shamma, J. S., “Aerial swarms: Recent applications and challenges,” Current Robotics Reports 2(3), 309320 (2021), doi: 10.1007/s43154-021-00063-4.CrossRefGoogle ScholarPubMed
Javed, S., Hassan, A., Ahmad, R., Ahmed, W., Ahmed, R., Saadat, A. and Guizani, M., “State-of-the-art and future research challenges in uav swarms,” IEEE Internet Things J. 11(11), 1902319045 (2024).10.1109/JIOT.2024.3364230CrossRefGoogle Scholar
Ramos, G. S., Henriques, F. D. R., Haddad, D. B., Andrade, F. A. A. and Pinto, M. F., “ARCog-NET: An aerial robot cognitive network architecture for swarm applications development,” IEEE Access 12, 129040129063 (2024).10.1109/ACCESS.2024.3456914CrossRefGoogle Scholar
Zhou, Y., Rao, B. and Wang, W., “Uav swarm intelligence: Recent advances and future trends,” IEEE Access 8, 183856183878 (2020).10.1109/ACCESS.2020.3028865CrossRefGoogle Scholar
Khamis, A., Hussein, A. and Elmogy, A., “Swarm robotics: A survey from a multi-tasking perspective,” IEEE Access 9, 133158133180 (2021).Google Scholar
Pinto, M. F., Honório, L. M., Marcato, A. L., Dantas, M. A., Melo, A. G., Capretz, M. and Urdiales, C., “ARCog: An Aerial Robotics Cognitive Architecture,” Robotica 39(3), 483502 (2021), doi: 10.1017/S0263574720000521.CrossRefGoogle Scholar
Dominey, P. F. and Warneken, F., “The basis of shared intentions in human and robot cognition,” New Ideas Psychol. 29(3), 260274 (2011).10.1016/j.newideapsych.2009.07.006CrossRefGoogle Scholar
Langley, P., Laird, J. E. and Rogers, S., “Cognitive architectures and general intelligent systems,” AI Mag. 30(2), 33 (2009).Google Scholar
Haazebroek, P., Van Dantzig, S. and Hommel, B., “A computational model of perception and action for cognitive robotics,” Cogn. Process. 12(4), 355365 (2011).10.1007/s10339-011-0408-xCrossRefGoogle ScholarPubMed
Rumelhart, D. E., “Schemata: The Building Blocks of Cognition,” In: Theoretical Issues in Reading Comprehension, (Routledge, 2017) pp. 3358.10.4324/9781315107493-4CrossRefGoogle Scholar
Ogata, T., Takahashi, K., Yamada, T., Murata, S. and Sasaki, K., “Machine learning for cognitive robotics,” Cognitive Robotics 1(1), 167–189, MIT Press, 2022, doi: https://doi.org/10.7551/mitpress/13780.003.0014.Google Scholar
Yang, Y., Fermuller, C. and Aloimonos, Y., “A cognitive system for human manipulation action understanding,” In: Second Annual Conference on Advances in Cognitive Systems (ACS)(2013), Maryland, United States, 2013, Advances in Cognitive Systems, pp. 67–86, Vol. 3.Google Scholar
Laird, J. E., Kinkade, K. R., Mohan, S. and Xu, J. Z., “Cognitive robotics using the soar cognitive architecture,” In: Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, Cognitive Robotics (2012), Ontario, Canada, 2012, Association for the Advancement of Artificial Intelligence, pp. 46-54, Vol. 26. No. 1.Google Scholar
Insaurralde, C. C., “Service-oriented agent architecture for unmanned air vehicles,” In: Digital Avionics Systems Conference (DASC), 2014 IEEE/AIAA 33rd, IEEE (2014) pp. 8B11.Google Scholar
Emel’yanov, S., Makarov, D., Panov, A. I. and Yakovlev, K., “Multilayer cognitive architecture for uav control,” Cogn. Syst. Res. 39, 5872 (2016).10.1016/j.cogsys.2015.12.008CrossRefGoogle Scholar
Selecky, M., Rollo, M., Losiewicz, P., Reade, J. and Maida, N., “Framework for incremental development of complex unmanned aircraft systems,” In: Integrated Communication, Navigation, and Surveillance Conference (ICNS), 2015, IEEE (2015) pp. J31.Google Scholar
Sanchez-Lopez, J. L., Molina, M., Bavle, H., Sampedro, C., Fernández, R. A. S. and Campoy, P., “A multi-layered component-based approach for the development of aerial robotic systems: The aerostack framework,” J. Intell. Robot. Syst. 88(2-4), 683709 (2017).10.1007/s10846-017-0551-4CrossRefGoogle Scholar
Das, T., “Intelligent techniques in decision making: A survey,” Indian Journal of Science and Technology 9(12), 16, 2016.Google Scholar
Liao, S.-H., “Expert system methodologies and applications—a decade review from 1995 to 2004,” Expert Syst. Appl. 28(1), 93103 (2005).10.1016/j.eswa.2004.08.003CrossRefGoogle Scholar
Sutton, R. S. and Barto, A. G., “Reinforcement Learning: An Introduction,” In: IEEE Transactions on Neural Networks 9(5), 1054–1054 (1998), doi: 10.1109/TNN.1998.712192.CrossRefGoogle Scholar
Leonetti, M., Iocchi, L. and Stone, P., “A synthesis of automated planning and reinforcement learning for efficient, robust decision-making,” Artificial Intelligence 241, 103130 (2016).10.1016/j.artint.2016.07.004CrossRefGoogle Scholar
Luna, M. A., Isaac, M. S. A., Ragab, A. R., Campoy, P., Pena, P. F. and Molina, M., “Fast multi-uav path planning for optimal area coverage in aerial sensing applications,” Sensors 22(6), 2297 (2022). [Online]. Available at: https://www.mdpi.com/1424-8220/22/6/2297.10.3390/s22062297CrossRefGoogle ScholarPubMed
Alfeo, A. L., Cimino, M. G. C. A., Francesco, N. D., Lazzeri, A., Lega, M. and Vaglini, G., “Swarm coordination of mini-uavs for target search using imperfect sensors,” Intelligent Deci-sion Technologies 12(2), 149162 (2018).10.3233/IDT-170317CrossRefGoogle Scholar
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R. and Ng, A. Y., “ROS: An open-source robot operating system,” in Proc. ICRA workshop on open source software, Kobe, Japan, 2009, International Conference on Robotics and Automation (ICRA), Vol. 3, no. 3.2.Google Scholar
Open Robotics, Gazebo Robot Simulator, (2021). Available at: http://gazebosim.org/.Google Scholar
Open Robotics, MAVROS – MAVLink extendable communication node for ROS with proxy for Ground Control Station, (2022). Available at: http://wiki.ros.org/mavros.Google Scholar
MAVLINK, MAVLink Developer Guide, (2022). Available at: https://mavlink.io/en/.Google Scholar
PX4, Open Source Autopilot for Drone Developers, (2022). Available at: https://px4.io/.Google Scholar
Erez, T., Tassa, Y. and Todorov, E., “Simulation tools for model-based robotics: Comparison of bullet, havok, mujoco, ode and physx,” In: 2015 IEEE International Conference on Robotics and Automation (ICRA), (2015) pp. 43974404.Google Scholar
Anagnostopoulos, C., Koulamas, C., Lalos, A. and Stylios, C., “Open-source integrated simulation framework for cooperative autonomous vehicles,” In: 2022 11th Mediterranean Conference on Embedded Computing (MECO) (2022) pp. 14.Google Scholar
OpenSim Ltd., OMNet++: Discrete Event Simulator, (2022). Available at: https://omnetpp.org/.Google Scholar
Mohini, A., CDSSim - Multi UAV Communication and Control Simulation Framework, Master’s thesis, University of Cincinnati. OhioLINK Electronic Theses and Dissertations Center (2019). Available at: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1554373574457271.Google Scholar
NSNAM, NS-3 Network Simulator, (2022). Available at: https://www.nsnam.org/.Google Scholar
Ardupilot, Controller Diagrams, (2021). Available at: https://docs.px4.io/master/en/flight_stack/controller_diagrams.html.Google Scholar
Ardupilot, Multicopter pid tuning guide (manual/advanced), (2021). Available at: https://docs.px4.io/master/en/config_mc/pid_tuning_guide_multicopter.html#rate-controller.Google Scholar
Acharya, S., Bharadwaj, A., Simmhan, Y., Gopalan, A., Parag, P. and Tyagi, H., “CORNET: A Co-Simulation Middleware for Robot Networks,” In: 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS) (2020), Bengaluru, India, 2020, IEEE Xplore, pp. 245251, doi: 10.1109/COMSNETS48256.2020.9027459.CrossRefGoogle Scholar
Calvo-Fullana, M., Mox, D., Pyattaev, A., Fink, J., Kumar, V. and Ribeiro, A., “Ros-netsim: A framework for the integration of robotic and network simulators,” CoRR 2101(10113), 11201127 (2021). [Online]. Available at: https://arxiv.org/abs/2101.10113Google Scholar
Pinto, M. F., Marcato, A. L., Melo, A. G., Honório, L. M. and Urdiales, C., “A framework for analyzing fog-cloud computing cooperation applied to information processing of uavs,” Wireless Communications and Mobile Computing 2019, 114 (2019).10.1155/2019/7497924CrossRefGoogle Scholar
Yang, Z., Zhang, H. and Xu, L., “Multi-uav cooperative task allocation based on improved genetic algorithm,” IEEE Access 8, 6543265442 (2020).Google Scholar
Shin, H.-S. and Bang, H.-C., “Market-based task assignment for cooperative timing missions in dynamic environments,” J. Intell. Robot. Syst. 87(1), 97123 (2017).Google Scholar
Gupta, L., Jain, R. and Vaszkun, G., “Survey of important issues in uav communication networks,” IEEE Commun. Surv. Tutor. 18(2), 11231152 (2016).10.1109/COMST.2015.2495297CrossRefGoogle Scholar
Zhao, X., Liu, Y. and Chen, H., “Autonomous task allocation for uav swarms using heuristic clustering and auction mechanisms,” IEEE Trans. Vehicular Tech. 70(8), 74047417 (2021).Google Scholar
Liu, W., Zhang, T. and Huang, J., “Multi-agent reinforcement learning-based task allocation for uav swarms,” IEEE Trans. Intell. Transp. syst. 23(10), 1724517257 (2022).Google Scholar
Raspberry Pi Foundation, Raspberry Pi, (2022). Available at: https://www.raspberrypi.org.Google Scholar
Ramos, G. S., Multi UAV Environmental Surveyllance Simulation with ROS/Gazebo, (2024). Available at: https://www.youtube.com/watch?v=u_XFkuzfRcs.Google Scholar
Ramos, G. S. and Pinto, M. F., Shuttle Tanker, FPSO and FSO Image Dataset for Ship Recognition, IEEE Dataport. (2021), Available at: https://dx.doi.org/10.21227/9xzy-fd09.CrossRefGoogle Scholar
Ramos, G. S., Pinto, M. F., de Souza, E. S. S., Machado, G. B. and de Castro, G. G. R., “Technical and economic feasibility study for implementing a novel mooring-assisting methodology in offloading operations using autonomous unmanned aerial vehicles,” SPE Production and Operations 37(01), 7287 (2021), doi: 10.2118/205524-PA.CrossRefGoogle Scholar
Ramos, G. S., De Lima, A. A., Almeida, L. F., Lima, J. and Pinto, M. F., “Simulation and evaluation of deep learning autoencoders for image compression in multi-UAV network systems,” In: 2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE) (2023), Bahia, Brazil, IEEE Xplore, pp. 4146, Vol. 1, doi: 10.1109/LARS/SBR/WRE59448.2023.10332986.CrossRefGoogle Scholar
Kalami, S. M. H., path-planning: A collection of path planning algorithms (2021). https://github.com/smkalami/path-planning. accessed: 2023-03-24.Google Scholar
Kennedy, J. and Eberhart, R., “Particle swarm optimization,” In: Proceedings of ICNN’95 - International Conference on Neural Networks, IEEE, vol. 4, (1995) pp. 19421948.Google Scholar
Hart, P. E., Nilsson, N. J. and Raphael, B., “A formal basis for the heuristic determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cyber. 4(2), 100107 (1968).10.1109/TSSC.1968.300136CrossRefGoogle Scholar
Dijkstra, E. W., “A note on two problems in connexion with graphs,” Numerische Mathematik 1(1), 269271 (1959).10.1007/BF01386390CrossRefGoogle Scholar
LaValle, S. M., “Rapidly-Exploring Random Trees: A New Tool for Path Planning,” Technical Report TR 98-11, Department of Computer Science, Iowa State University, 1998, pp. 98–11, Vol. 1.Google Scholar
Liu, C., Chen, W.-H. and Yang, G., “Distributed model predictive control for multi-robot formation,” IEEE Trans. Cont. Syst. Tech. 28(6), 24562468 (2020).Google Scholar
Pu, Z., Zhang, T., Ai, X., Qiu, T. and Yi, J., “A deep reinforcement learning approach combined with model-based paradigms for multiagent formation control with collision avoidance,” IEEE Trans. Syst. Man, Cyber: Syst. 53(7), 41894204 (2023).10.1109/TSMC.2023.3241337CrossRefGoogle Scholar
Dai, X., Liu, K. and Xia, Y., “Event-triggered consensus-based formation control for multi-agent systems,” Automatica 135, 109987 (2022).Google Scholar