Hostname: page-component-5b777bbd6c-v4w92 Total loading time: 0 Render date: 2025-06-25T10:51:58.911Z Has data issue: false hasContentIssue false

Decentralized dynamic trajectory optimization of the coordinated manipulator via analytical reinforcement method

Published online by Cambridge University Press:  23 June 2025

Xingyu Zhang
Affiliation:
College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, People’s Republic of China
Luchuan Yu*
Affiliation:
College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, People’s Republic of China
Shenquan Huang
Affiliation:
College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, People’s Republic of China
Youzhi Zhang
Affiliation:
College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, People’s Republic of China
*
Corresponding author: Luchuan Yu; Email: yulcsdu@foxmail.com

Abstract

Efficient local trajectory optimization of the coordinated manipulator is a bottleneck task in the narrow feeding scenario. To optimize the trajectory locally and generate collision-free trajectories with local support performance, the analytical reinforcement method is proposed. Firstly, multiple coordinated machines operating in the narrow space are transformed into decentralized dynamic constraints for the target manipulator. Combined with the circle envelope method in the dynamic constraint, the collision-free gradient optimization function determines the support region of the local optimal trajectory. Based on the forward kinematics and inverse kinematics method, the collision-prone pose of the target manipulator outside the support region is analytically optimized. And chi-square distribution further ensures the smooth interpolation of the variable-period trajectory outside the fixed-period support region. For the emergency collision avoidance of the coordinated manipulator in the flexible stamping line, the analytical reinforcement method is successfully verified by generating the collision-free and smooth trajectory. It provides an optimization direction for rapidly improving the work efficiency of multi-machine coordination in the narrow feeding scenario.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Yu, L. C., Wang, K. Q., Zhang, Z. G., Zhang, Q. H. and Zhang, J. H., “Simulation-based multi-machine coordination for high-speed press line,” J. Braz. Soc. Mech. Sci. Eng. 41(7), 29 (2019). doi: 10.1007/s40430-019-1775-y.CrossRefGoogle Scholar
Yousefizadeh, S. and Bak, T., “Unknown external force estimation and collision detection for a cooperative robot,” Robotica 38(9), 16651681 (2020). doi: 10.1017/S0263574719001681.CrossRefGoogle Scholar
Haddadin, S., De Luca, A. and Albu-Schäffer, A., “Robot collisions: A survey on detection, isolation, and identification,” IEEE Trans. Robot. 33(6), 12921312 (2017). doi: 10.1109/TRO.2017.2723903.CrossRefGoogle Scholar
Tang, W., Zhou, Y., Zhang, T., Liu, Y., Liu, J. and Ding, Z., “Cooperative collision avoidance in multirobot systems using fuzzy rules and velocity obstacles,” Robotica 41(2), 668689 (2023). doi: 10.1017/S0263574722001515.CrossRefGoogle Scholar
Gan, B. Q. and Dong, Q. P., “An improved optimal algorithm for collision detection of hybrid hierarchical bounding box,” Evol. Intell. 15(4), 25152527 (2022). doi: 10.1007/s12065-020-00559-6.CrossRefGoogle Scholar
Kim, J., Seol, Y., Kim, H. and Kwon, T., “Interactive character posing with efficient collision handling,” Comput. Animat. Virtual Worlds 31(3), 1923 (2020). doi: 10.1002/cav.1923.CrossRefGoogle Scholar
Römer, U. J., Fidlin, A. and Seemann, W., “The normal parameterization and its application to collision detection,” Mech. Mach. Theory 151, 103906 (2020). doi: 10.1016/j.mechmachtheory.2020.103906.CrossRefGoogle Scholar
Ebrahimi, S. M., Norouzi, F., Dastres, H., Faieghi, R., Naderi, M. and Malekzadeh, M., “Sensor fault detection and compensation with performance prescription for robotic manipulators,” J. Frankl. Inst. 361(7), 106742 (2024). doi: 10.1016/j.jfranklin.2024.106742.CrossRefGoogle Scholar
Feng, Y. X., Tian, X. Y., Li, T. M. and Jiang, Y., “Measurement of mobile manipulator chassis pose change caused by suspension deformation and end-effector accuracy improvement based on multi-sensor fusion,” Robot. Autonom. Syst. 170, 104553 (2023). doi: 10.1016/j.robot.2023.104553.CrossRefGoogle Scholar
Das, M. S., Sanyal, S. and Mandal, S., “Navigation of multiple robots in formative manner in an unknown environment using artificial potential field based path planning algorithm,” Ain Shams Eng. J. 13(5), 101675 (2022). doi: 10.1016/j.asej.2021.101675.CrossRefGoogle Scholar
Yamashita, A., Arai, T., Ota, J. and Asama, H., “Motion planning of multiple mobile robots for cooperative manipulation and transportation,” IEEE Trans. Robot. Autom. 19(2), 223237 (2003). doi: 10.1109/TRA.2003.809592.CrossRefGoogle Scholar
Yang, D., Dong, L. and Dai, J. K., “Collision avoidance trajectory planning for a dual-robot system: Using a modified APF method,” Robotica 42(3), 846863 (2024). doi: 10.1017/S0263574723001807.CrossRefGoogle Scholar
Gao, Z. L., Li, Y. F., Wang, Y. H. and Liu, Q. S., “Distributed tracking control of structural balance for complex dynamical networks based on the coupling targets of nodes and links,” Complex Intell. Syst. 9(1), 881889 (2023). doi: 10.1007/s40747-022-00840-4.CrossRefGoogle Scholar
Huang, J. Y., Zhou, S. Y., Tu, H., Yao, Y. H. and Liu, Q. S., “Distributed optimization algorithm for multi-robot formation with virtual reference center,” IEEE/CAA J. Autom. Sin. 9(4), 732734 (2022). doi: 10.1109/JAS.2022.105473.CrossRefGoogle Scholar
Meng, X. W., Sun, J. T., Liu, Q. S. and Chi, G. Y., “A discrete-time distributed optimization algorithm for cooperative transportation of multi-robot system,” Complex Intell. Syst. 10(1), 343355 (2024). doi: 10.1007/s40747-023-01178-1.CrossRefGoogle Scholar
Maghami, A., Imbert, A., Côté, G., Monsarrat, B., Birglen, L. and Khoshdarregi, M., “Calibration of muli-robot cooperative systems using deep neural networks,” J. Intell. Robot. Syst. 107(4), 55 (2023). doi: 10.1007/s10846-023-01867-6.CrossRefGoogle Scholar
Deng, Y., Ni, T., Zhang, Z. and Wang, J., “Path-following and collision-avoidance guidance of unmanned sailboats based on beetle antennae search optimization,” Robotica 41(7), 21052121 (2023). doi: 10.1017/S0263574723000346.CrossRefGoogle Scholar
Pham, M. N., Hamelin, P., Hazel, B. and Z.Liu, A., “Two-stage state feedback controller supported by disturbance-state observer for vibration control of a flexible-joint robot,” Robotica 38(6), 10821104 (2020). doi: 10.1017/S0263574719001267.CrossRefGoogle Scholar
Wu, J. W., Tang, X. W., Xin, S. H., Wang, C. Y., Peng, F. Y. and Yan, R., “Research on the directionality of end dynamic compliance dominated by milling robot body structure and milling vibration suppression,” Robot. Comput.-Integrated Manuf. 85, 102631 (2024). doi: 10.1016/j.rcim.2023.102631.CrossRefGoogle Scholar
Boscariol, P., Richiedei, D. and Tamellin, I., “Residual vibration suppression in uncertain systems: A robust structural modification approach to trajectory planning,” Robot. Comput.-Integrated Manuf. 74, 102282 (2022). doi: 10.1016/j.rcim.2021.102282.CrossRefGoogle Scholar
Benotsmane, R., Dudás, L. and Kovács, G., “Trajectory optimization of industrial robot arms using a newly elaborated whip-lashing method,” Appl. Sci. 10, 23 (2020). doi: 10.3390/app10238666.CrossRefGoogle Scholar
Ding, M., Zheng, X., Liu, L., Guo, J. and Guo, Y., “Collision-free path planning for cable-driven continuum robot based on improved artificial potential field,” Robotica 42(5), 13501367 (2024). doi: 10.1017/S026357472400016X.CrossRefGoogle Scholar
Becker, M., Lilge, T., Müller, M. A. and Haddadin, S., “Circular fields and predictive multi-agents for online global trajectory planning,” IEEE Robot. Autom. Lett. 6(2), 26182625 (2021). doi: 10.1109/LRA.2021.3061997.CrossRefGoogle Scholar
Gómez, M., González, R. V., Martínez-Marín, T., Meziat, D. and Sánchez, S., “Optimal motion planning by reinforcement learning in autonomous mobile vehicles,” Robotica 30(2), 159170 (2012). doi: 10.1017/S0263574711000452.CrossRefGoogle Scholar
Fan, Z. W., Jia, K., Zhang, L., Zhou, F. S., Du, Z. J., Liu, M. M., Cao, Y. T. and Zhang, Q., “A cartesian-based trajectory optimization with jerk constraints for a robot,” Entropy 25(4), 610 (2023). doi: 10.3390/e25040610.CrossRefGoogle ScholarPubMed
Chettibi, T., “Multi-objective trajectory planning for industrial robots using a hybrid optimization approach,” Robotica 42(6), 20262045 (2024). doi: 10.1017/S0263574724000766.CrossRefGoogle Scholar
Wang, W. X., Hu, C. X., Zhou, K., He, S. Q. and Zhu, L. M., “Local asymmetrical corner trajectory smoothing with bidirectional planning and adjusting algorithm for CNC machining,” Robot. Comput.-Integr. Manuf. 68, 102058 (2021). doi: 10.1016/j.rcim.2020.102058.CrossRefGoogle Scholar
Yu, L. C., Zhou, S. Q. and Huang, S. Q., “Trajectory optimization of the redundant manipulator with local variable period under multi-machine coordination,” Robotica 41(1), 2923052023 (2023). doi: 10.1017/S0263574722001291.CrossRefGoogle Scholar
Shao, J., Liao, J. F., Zhu, S. Q., Zhang, H. Y. and Song, W., “Trajectory optimization for manipulation considering grasp selection and adjustment,” J. Intell. Robot. Syst. 109(1), 12 (2023). doi: 10.1007/s10846-023-01946-8.CrossRefGoogle Scholar
Chen, W. H., Wang, H., Liu, Z. H. and Jiang, K. J., “Time-energy-jerk optimal trajectory planning for high-speed parallel manipulator based on quantum-behaved particle swarm optimization algorithm and quintic B-spline,” Eng. Appl. Artif. Intell. 126, 107223 (2023). doi: 10.1016/j.engappai.2023.107223.CrossRefGoogle Scholar
Yao, Z., Zhang, W. M., Shi, Y. L., Li, M. Z., Liang, Z. S., Li, F. X. and Huang, Q., “RimJump: Edge-based shortest path planning for a 2D map,” Robotica 37(4), 641655 (2019). doi: 10.1017/S0263574718001236.CrossRefGoogle Scholar
Yu, L. C., Wang, K. Q., Zhang, Q. H. and Zhang, J. H., “Trajectory planning of a redundant planar manipulator based on joint classification and particle swarm optimization algorithm,” Multibody Syst. Dyn. 50(1), 2543 (2020). doi: 10.1007/s11044-019-09720-1.CrossRefGoogle Scholar
Yu, L. C., “Feeding mechanisms in the auto-body stamping production line: A review of common research,” J. Inst. Eng. India Ser. C 104(2), 4394482023 (2023). doi: 10.1007/s40032-023-00925-0.CrossRefGoogle Scholar
Huang, S. Q., Zhou, S. Q., Yu, L. C. and Wang, J. J., “Multi-objective trajectory optimization of the 2-redundancy planar feeding manipulator based on pseudo-attractor and radial basis function neural network,” Mech. Based Des. Struct. Mach. 52(8), 50195039 (2023 [Online]). doi: 10.1080/15397734.2023.2245872.CrossRefGoogle Scholar