Hostname: page-component-7dd5485656-hw7sx Total loading time: 0 Render date: 2025-10-27T09:07:14.043Z Has data issue: false hasContentIssue false

Fire SLAM: a visual Simultaneous Localization and Mapping algorithm for firefighting robots

Published online by Cambridge University Press:  27 October 2025

Tao Yang
Affiliation:
The Engineering Research Center of Intelligent Control System and Intelligent Equipment, Ministry of Education, Hebei Key Laboratory of Intelligent rehabilitation and Neuromodulation, Hebei Advanced Equipment Industry Technology Research Institute, Yanshan University, Qinhuangdao, 066004, China
Weili Ding*
Affiliation:
The Engineering Research Center of Intelligent Control System and Intelligent Equipment, Ministry of Education, Hebei Key Laboratory of Intelligent rehabilitation and Neuromodulation, Hebei Advanced Equipment Industry Technology Research Institute, Yanshan University, Qinhuangdao, 066004, China
Junjie Luo
Affiliation:
The Engineering Research Center of Intelligent Control System and Intelligent Equipment, Ministry of Education, Hebei Key Laboratory of Intelligent rehabilitation and Neuromodulation, Hebei Advanced Equipment Industry Technology Research Institute, Yanshan University, Qinhuangdao, 066004, China
*
Corresponding author: Weili Ding; Email: weiye51@ysu.edu.cn

Abstract

In firefighting missions, human firefighters are often exposed to high-risk environments such as intense heat and limited visibility. To address this, firefighting robots can serve as valuable agents for autonomous navigation and flame perception. This paper proposes a novel visual Simultaneous Localization and Mapping (SLAM) framework, Fire SLAM, tailored for firefighting scenarios. The system integrates a flame detection and tracking thread-based on the YOLOv8n network and Kalman filtering-to achieve real-time flame detection, tracking, and 3D localization. By leveraging the detection results, dynamic flame regions are excluded from the SLAM front-end, allowing static features to be used for robust pose estimation and loop closure. To validate the proposed system, multiple datasets were collected from real-world and simulated fire environments. Experimental results demonstrate that Fire SLAM improves localization accuracy and robustness in fire scenes with flame disturbances, showing promise for autonomous firefighting robot deployment.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Sherstjuk, V., Zharikova, M. and Sokol, I., “Forest Fire Monitoring System Based on UAV Team, Remote Sensing, and Image Processing,” In: 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP) (2018) pp. 590594.Google Scholar
Cheng, H. M., Yang, T. C. and Li, L., “Intelligent Fire-Fighting Robot,” In: International Conference on Mechanical Design, Manufacturing and Automation (2015).Google Scholar
Wilk-Jakubowski, G., Harabin, R. and Ivanov, S., “Robotics in crisis management: A review,” Technol. Soc. 68, 101935 (2022).10.1016/j.techsoc.2022.101935CrossRefGoogle Scholar
Shamsudin, A. U., Ohno, K., Hamada, R., Kojima, S., Westfechtel, T., Suzuki, T., Okada, Y., Tadokoro, S., Fujita, J. and Amano, H., “Consistent map building in petrochemical complexes for firefighter robots using slam based on gps and lidar,” Robomech. J. 5, 113 (2018).Google Scholar
bin Shamsudin, A. U., Mizuno, N., Fujita, J., Ohno, K., Hamada, R., Westfechtel, T., Tadokoro, S. and Amano, H., “Evaluation of lidar and gps based slam on fire disaster in petrochemical complexes,” In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR) (IEEE , 2017) pp. 4854.10.1109/SSRR.2017.8088139CrossRefGoogle Scholar
bin Shamsudin, A. U., Mizuno, N., Fujita, J., Ohno, K., Hamada, R., Westfechtel, T., Tadokoro, S. and Amano, H., “Evaluation of Lidar and GPS based slam on fire disaster in petrochemical complexes,” In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR) (IEEE , 2017) pp. 4854.10.1109/SSRR.2017.8088139CrossRefGoogle Scholar
Li, S., Yun, J., Feng, C., Gao, Y., Yang, J., Sun, G. and Zhang, D., “An indoor autonomous inspection and firefighting robot based on slam and flame image recognition,” Fire 6(3), 93 (2023).10.3390/fire6030093CrossRefGoogle Scholar
Li, Y., Ji, H., Zhao, H. and Yu, A., “Summary of Fault Prediction Algorithms for Fire Control System,” In: 2024 Prognostics and System Health Management Conference (PHM) (IEEE , 2024) pp. 8083.10.1109/PHM61473.2024.00022CrossRefGoogle Scholar
Zhang, S., Wang, R., Tian, Y., Yao, J. and Zhao, Y., “Motion analysis of the fire-fighting robot and trajectory correction strategy,” Simul. Model. Pract. Theory 125, 102738 (2023).10.1016/j.simpat.2023.102738CrossRefGoogle Scholar
Engel, J., Koltun, V. and Cremers, D., “Direct sparse odometry,” IEEE Trans. Pattern Anal. 40(3), 611625 (2018).10.1109/TPAMI.2017.2658577CrossRefGoogle ScholarPubMed
Forster, C., Zhang, Z., Gassner, M., Werlberger, M. and Scaramuzza, D., “Svo: semidirect visual odometry for monocular and multicamera systems,” IEEE Trans. Robot. 33(2), 249265 (2017).10.1109/TRO.2016.2623335CrossRefGoogle Scholar
Raúl Mur-Artal, J. M. M. M. and Tardós, J. D., “Orb-slam: A versatile and accurate monocular slam system,” IEEE Trans. Robot. 31(5), 11471163 (2015).10.1109/TRO.2015.2463671CrossRefGoogle Scholar
Mur-Artal, R.úl and Tardós, J. D., “Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras,” IEEE Trans. Robot. 33(5), 12551262 (2017).10.1109/TRO.2017.2705103CrossRefGoogle Scholar
Campos, C., Elvira, R., Rodríguez, J. J. Gómez, Montiel, J.é M. M. and Tardós, J. D., “Orb-slam3: An accurate open-source library for visual, visual-inertial, and multimap slam,” IEEE Trans. Robot. 37(6), 18741890 (2021).10.1109/TRO.2021.3075644CrossRefGoogle Scholar
Rublee, E., Rabaud, V., Konolige, K. and Bradski, G.. “Orb: An efficient alternative to sift or surf,” In: 2011 International Conference on Computer Vision (2011) pp. 25642571.Google Scholar
Ferrera, M., Eudes, A., Moras, J., Sanfourche, M. and Besnerais, G. L., “Ov $^{2}$ slam: A fully online and versatile visual slam for real-time applications,” IEEE Robot. Autom. Lett. 6(2), 13991406 (2021).10.1109/LRA.2021.3058069CrossRefGoogle Scholar
Yu, X., Zheng, W. and Ou, L., “Cpr-slam: Rgb-d slam in dynamic environment using sub-point cloud correlations,” Robotica 42(7), 23672387 (2024).10.1017/S0263574724000754CrossRefGoogle Scholar
Shen, Y. and Zhang, X., “A dynamic slam system with yolov7 segmentation and geometric constraints for indoor environments,” Robotica, 43, 119 (2025).10.1017/S0263574725101823CrossRefGoogle Scholar
Zhang, K., Dong, C., Guo, H., Ye, Q., Gao, L., Xiang, S., Chen, X. and Wu, Y., “A semantic visual slam based on improved mask r-cnn in dynamic environment,” Robotica 42(10), 35703591 (2024).10.1017/S0263574724001553CrossRefGoogle Scholar
Skrbek, W., Briess, K., Oertel, D., Lorenz, E., Walter, I. and Zhukov, B., “Sensor System for Fire Detection Onboard the Small Satellite Bird,” In: Infrared Spaceborne Remote Sensing X, vol. 4818 (SPIE, 2002) pp. 2336.10.1117/12.450839CrossRefGoogle Scholar
Guan-lin, F., “Design of fire alarm system based on multi-source information fusion,” In: 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), vol .5 (IEEE, 2010) pp. V5-269.10.1109/ICACTE.2010.5579763CrossRefGoogle Scholar
Li, Z., Mihaylova, L. S., Isupova, O. and Rossi, L., “Autonomous flame detection in videos with a dirichlet process gaussian mixture color model,” IEEE Trans. Ind. Inform. 14(3), 11461154 (2017).10.1109/TII.2017.2768530CrossRefGoogle Scholar
Chen, T.-H., Wu, P.-H. and Chiou, Y.-C., “An Early Fire-Detection Method Based On Image Processing,” In: 2004 International Conference On Image Processing, vol. 04 (IEEE, 2004) pp. 17071710.Google Scholar
Han, X.-F., Jin, J. S., Wang, M.-J., Jiang, W., Gao, L. and Xiao, L.-P., “Video fire detection based on gaussian mixture model and multi-color features,” Signal, Image Video Process. 11, 14191425 (2017).10.1007/s11760-017-1102-yCrossRefGoogle Scholar
Seebamrungsat, J., Praising, S. and Riyamongkol, P., “Fire Detection in the Buildings Using Image Processing,” In: 2014 Third ICT International Student Project Conference (ICT-ISPC) (IEEE , 2014) pp. 9598.10.1109/ICT-ISPC.2014.6923226CrossRefGoogle Scholar
Pritam, D. and Dewan, J. H., “Detection of Fire Using Image Processing Techniques with LUV Color Space,” In: 2017 2nd International Conference for Convergence in Technology (I2CT) (IEEE , 2017) pp. 11581162.10.1109/I2CT.2017.8226309CrossRefGoogle Scholar
Zaman, T., Hasan, M., Ahmed, S. and Ashfaq, S., “Fire Detection Using Computer Vision,” In: 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) (2018) pp. 356359.Google Scholar
Wenzheng, L. and Jie, W., “A yolov7 Forest Fire Detection System with Edge Computing,” In: 2023 IEEE 13th International Conference on Electronics Information and Emergency Communication (ICEIEC) (IEEE , 2023) pp. 223227.10.1109/ICEIEC58029.2023.10200044CrossRefGoogle Scholar
Xie, Y., Zhu, J., Cao, Y., Zhang, Y., Feng, D., Zhang, Y. and Chen, M., “Efficient video fire detection exploiting motion-flicker-based dynamic features and deep static features,” IEEE Access 8, 8190481917 (2020).10.1109/ACCESS.2020.2991338CrossRefGoogle Scholar
Huang, X. and Du, L., “Fire detection and recognition optimization based on virtual reality video image,” IEEE Access 8, 7795177961 (2020).10.1109/ACCESS.2020.2990224CrossRefGoogle Scholar
Cao, X., Su, Y., Geng, X. and Wang, Y., “Yolo-sf: Yolo for fire segmentation detection,” IEEE Access 11, 111079111092 (2023).10.1109/ACCESS.2023.3322143CrossRefGoogle Scholar
Kong, S. G., Jin, D., Li, S. and Kim, H., “Fast fire flame detection in surveillance video using logistic regression and temporal smoothing,” Fire Safety J. 79, 3743 (2016).10.1016/j.firesaf.2015.11.015CrossRefGoogle Scholar
Ding, W., Yang, T., Li, J. X., Hua, C. C. and Mu, D. R., “A real-time flame detection and situation assessment algorithm for firefighting robots,” Fire Technol., 121 (2025).Google Scholar
Peng, Y., Sonka, M. and Chen, D. Z., “U-net v2: Rethinking the skip connections of u-net for medical image segmentation, arXiv preprint arXiv:2311.17791 (2023).Google Scholar
Zhang, Z., “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. 22(11), 13301334 (2000).10.1109/34.888718CrossRefGoogle Scholar
Matsumoto, M. and Nishimura, T., “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul. (TOMACS) 8(1), 330 (1998).10.1145/272991.272995CrossRefGoogle Scholar
Hinneburg, A., “A Density Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: KDD Conference (1996).Google Scholar
Ding, W., Pei, Z., Yang, T. and Chen, T., “Dynamic simultaneous localization and mapping based on object tracking in occluded environment,” Robotica 42(7), 22092225 (2024).10.1017/S0263574724000420CrossRefGoogle Scholar