Hostname: page-component-857557d7f7-gtc7z Total loading time: 0.001 Render date: 2025-11-26T09:47:06.962Z Has data issue: false hasContentIssue false

A novel semi-coupled hierarchical motion planning framework for cooperative transportation of multiple mobile manipulators

Published online by Cambridge University Press:  24 November 2025

Heng Zhang
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai, China
Haoyi Song
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai, China
Wenhang Liu
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai, China
Xinjun Sheng
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai, China
Zhenhua Xiong*
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai, China
Xiangyang Zhu
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai, China
*
Corresponding author: Zhenhua Xiong; Email: mexiong@sjtu.edu.cn

Abstract

Multiple mobile manipulators (MMs) show superiority in the tasks requiring mobility and dexterity compared with a single robot, especially when manipulating/transporting bulky objects. However, closed-chain of the system, redundancy of each MM, and obstacles in the environment bring challenges to the motion planning problem. In this paper, we propose a novel semi-coupled hierarchical framework (SCHF), which decomposes the problem into two semi-coupled sub-problems. To be specific, the centralized layer plans the object’s motion first, and then the decentralized layer independently explores the redundancy of each robot in real-time. A notable feature is that the lower bound of the redundancy constraint metric is ensured, besides the closed-chain and obstacle-avoidance constraints in the centralized layer, which ensures the object’s motion can be executed by each robot in the decentralized layer. Simulated results show that the success rate and time cost of SCHF outperform the fully centralized planner and fully decoupled hierarchical planner significantly. In addition, cluttered real-world experiments also show the feasibility of the SCHF in the transportation tasks. A video clip in various scenarios can be found at https://youtu.be/Y8ZrnspIuBg.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Morsy, M., Al-Otaibi, H., Salamah, Y. and Ahmad, I., “Multi-robot movement based on a new modified source-seeking algorithm,” Robotica 43(3), 945958 (2025).10.1017/S0263574724002200CrossRefGoogle Scholar
Kim, J. and Park, F., “Active learning of the collision distance function for high-DOF multi-arm robot systems,” Robotica 42(12), 40554069 (2024).10.1017/S0263574723001790CrossRefGoogle Scholar
Zhan, X., Chen, Y., Chen, X. and Zhang, W., “Balanced multi-UAV path planning for persistent monitoring,” Robotica 43(1), 332349 (2025).10.1017/S0263574724001899CrossRefGoogle Scholar
Petersen, K. H., Napp, N., Stuart-Smith, R., Rus, D. and Kovac, M., “A review of collective robotic construction,” Sci. Robot. 4(28), eaau8479 (2019).10.1126/scirobotics.aau8479CrossRefGoogle ScholarPubMed
Raptis, I. and Sullivan, B., “Arachne system: An accessible miniaturized mobile multi-robot platform,” Robotica 43(7), 26102643 (2025).10.1017/S0263574725101884CrossRefGoogle Scholar
Kingston, Z., Moll, M. and Kavraki, L. E., “Sampling-based methods for motion planning with constraints,” Annu. Rev. Control Robot. Auton. Syst. 1(1), 159185 (2018).10.1146/annurev-control-060117-105226CrossRefGoogle Scholar
Ebel, H., Rosenfelder, M. and Eberhard, P., “Cooperative object transportation with differential-drive mobile robots: Control and experimentation,” Robot. Auton. Syst. 173, 104612 (2024).10.1016/j.robot.2023.104612CrossRefGoogle Scholar
Thakar, S., Rajendran, P., Kabir, A. M. and Gupta, S. K., “Manipulator motion planning for part pickup and transport operations from a moving base,” IEEE Trans. Autom. Sci. Eng. 19(1), 191206 (2022).10.1109/TASE.2020.3020050CrossRefGoogle Scholar
Chen, L., Liang, C., Yuan, S., Cao, M. and Xie, L., “Relative localizability and localization for multi-robot systems,” IEEE Trans. Robot. 41, 29312949 (2025).10.1109/TRO.2025.3544103CrossRefGoogle Scholar
Chen, T., Shorinwa, O., Bruno, J., Swann, A., Yu, J., Zeng, W., Nagami, K., Dames, P. and Schwager, M., “Splat-Nav: Safe Real-time robot navigation in Gaussian splatting maps,” IEEE Trans. Robot. 41, 27652784 (2025).10.1109/TRO.2025.3552348CrossRefGoogle Scholar
Qi, Z., Zhang, Z., Yu, Y., Wang, J. and Zhao, H., “VLN-R1: Vision-language navigation via reinforcement fine-tuning” (2025). ArXiv Preprint arXiv: 2506.17221.Google Scholar
Fabregat-Jaén, M., Peidró, A., Colombo, M., Rocco, P. and Reinoso, Ó., “Topological and spatial analysis of self-motion manifolds for global redundancy resolution in kinematically redundant robots,” Mech. Mach. Theory, 210, 106020 (2025).10.1016/j.mechmachtheory.2025.106020CrossRefGoogle Scholar
Zhang, H., Zhang, Y., Xiong, Z., Sheng, X. and Zhu, X., “A Task-Priority Coordinated Motion Planner Combined with Visual Servo for Mobile Manipulator,” In: IEEE/ASME Int. Conf. Adv. Intell. Mechatronics (AIM) (IEEE, 2019) pp. 712.10.1109/AIM.2019.8868347CrossRefGoogle Scholar
Zhang, H., Sheng, Q., Sun, Y., Sheng, X., Xiong, Z. and Zhu, X., “A novel coordinated motion planner based on capability map for autonomous mobile manipulator,” Robot. Auton. Syst. 129, 103554 (2020).10.1016/j.robot.2020.103554CrossRefGoogle Scholar
Bonilla, M., Pallottino, L. and Bicchi, A., “Noninteracting Constrained Motion Planning and Control for Robot Manipulators,” In: IEEE Int. Conf. Robotics Autom. (ICRA) (IEEE, 2017) pp. 40384043.10.1109/ICRA.2017.7989463CrossRefGoogle Scholar
Yakey, J. H., LaValle, S. M. and Kavraki, L. E., “Randomized path planning for linkages with closed kinematic chains,” IEEE Trans. Robot. Autom. 17(6), 951958 (2001).10.1109/70.976030CrossRefGoogle Scholar
Berenson, D., Srinivasa, S. and Kuffner, J., “Task space regions: A framework for pose-constrained manipulation planning,” Int. J. Robot. Res. 30(12), 14351460 (2011).10.1177/0278364910396389CrossRefGoogle Scholar
Zhang, X., Yan, L., Lam, T. L. and Vijayakumar, S., “Task-Space Decomposed Motion Planning Framework for Multi-Robot Loco-Manipulation,” In: IEEE Int. Conf. Robotics Autom. (ICRA) (IEEE, 2021) pp. 81588164.10.1109/ICRA48506.2021.9560902CrossRefGoogle Scholar
Jaillet, L. and Porta, J. M., “Path Planning with Loop Closure Constraints Using an Atlas-Based RRT,” In: Int. Symp. Robotics Res. (ISRR) (Springer International Publishing, Cham, 2017) pp. 345362.10.1007/978-3-319-29363-9_20CrossRefGoogle Scholar
Kim, B., Um, T. T., Suh, C. and Park, F. C., “Tangent bundle RRT: A randomized algorithm for constrained motion planning,” Robotica 34(1), 202225 (2016).10.1017/S0263574714001234CrossRefGoogle Scholar
Oh, K.-K., Park, M.-C. and Ahn, H.-S., “A survey of multi-agent formation control,” Automatica 53, 424440 (2015).10.1016/j.automatica.2014.10.022CrossRefGoogle Scholar
Tang, Q., Zhang, Y., Yu, F. and Zhang, J., “An Obstacle Avoidance Approach Based on System Outlined Rectangle for Cooperative Transportation of Multiple Mobile Manipulators,” In: IEEE Int. Conf. Intelligence Safety Robotics (ISR) (IEEE, 2018) pp. 533538.10.1109/IISR.2018.8535773CrossRefGoogle Scholar
Alonso-Mora, J., Baker, S. and Rus, D., “Multi-robot formation control and object transport in dynamic environments via constrained optimization,” Int. J. Robot. Res. 36(9), 10001021 (2017).10.1177/0278364917719333CrossRefGoogle Scholar
Zhang, H., Sheng, Q., Hu, J., Sheng, X., Xiong, Z. and Zhu, X., “Cooperative transportation with mobile manipulator: A capability map-based framework for physical human–Robot collaboration,” IEEE/ASME Trans. Mechatron. 27(6), 110 (2022).10.1109/TMECH.2022.3155601CrossRefGoogle Scholar
Jiao, J., Cao, Z., Gu, N., Nahavandi, S., Yang, Y. and Tan, M., “Transportation by multiple mobile manipulators in unknown environments with obstacles,” IEEE Syst. J. 11(4), 28942904 (2015).10.1109/JSYST.2015.2416215CrossRefGoogle Scholar
Karaman, S. and Frazzoli, E., “Sampling-based algorithms for optimal motion planning,” Int. J. Robot. Res. 30(7), 846894 (2011).10.1177/0278364911406761CrossRefGoogle Scholar
Kavraki, L. E., Svestka, P., Latombe, J.-C. and Overmars, M. H., “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. Roboti. Autom. 12(4), 566580 (1996).10.1109/70.508439CrossRefGoogle Scholar
Hekmatfar, T., Masehian, E. and Mousavi, S. J., “Cooperative Object Transportation by Multiple Mobile Manipulators through a Hierarchical Planning Architecture,” In: Int. Conf. Robotics Mechatronics (ICRoM) (IEEE, 2014) pp. 503508.10.1109/ICRoM.2014.6990952CrossRefGoogle Scholar
Hsu, D., Latombe, J.-C. and Motwani, R., “Path planning in expansive configuration spaces,” IEEE Int. Conf. Robot. Autom. (ICRA) 3, 27192726 (1997).Google Scholar
Kuffner, J. J. and LaValle, S. M., “RRT-connect: An efficient approach to single-query path planning,” IEEE Int. Conf. Robot. Autom. (ICRA) 2, 9951001 (2000).Google Scholar
Nelder, J. A. and Mead, R., “A simplex method for function minimization,” Comput. J. 7(4), 308313 (1965).10.1093/comjnl/7.4.308CrossRefGoogle Scholar
Sucan, I. A., Moll, M. and Kavraki, L. E., “The open motion planning library,” IEEE Robot. Autom. Mag. 19(4), 7282 (2012).10.1109/MRA.2012.2205651CrossRefGoogle Scholar
LaValle, S., “Rapidly-exploring random trees: A new tool for path planning,” (1998). Research Report 9811.Google Scholar
Şucan, I. A. and Kavraki, L. E., “Kinodynamic Motion Planning by Interior-Exterior Cell Exploration,” In: Algorithmic Foundations of Robotics VIII (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009) pp. 449464.10.1007/978-3-642-00312-7_28CrossRefGoogle Scholar
Gipson, B., Moll, M. and Kavraki, L. E., “Resolution Independent Density Estimation for Motion Planning in High-Dimensional Spaces,” In: IEEE Int. Conf. Robotics Autom. (ICRA) (IEEE, 2013) pp. 24372443.10.1109/ICRA.2013.6630908CrossRefGoogle Scholar
Caccavale, F. and Uchiyama, M., “Cooperative Manipulation,” In: Springer Handbook of Robotics (Springer International Publishing, Cham, 2016) pp. 9891006.10.1007/978-3-319-32552-1_39CrossRefGoogle Scholar
Hess, W., Kohler, D., Rapp, H. and Andor, D., “Real-time loop closure in 2D LIDAR SLAM,” In: 2016 IEEE International Conference On Robotics And Automation (ICRA) (IEEE, 2016) pp. 12711278.10.1109/ICRA.2016.7487258CrossRefGoogle Scholar
Orthey, A., Akbar, S. and Toussaint, M., “Multilevel motion planning: A fiber bundle formulation,” Int. J. Robot. Res. 43(1), 333 (2024).10.1177/02783649231209337CrossRefGoogle Scholar
Li, X., Wang, S. and Cai, Y., “Tutorial: Complexity analysis of singular value decomposition and its variants” (2019). ArXiv Preprint arXiv: 1906.12085.Google Scholar
Supplementary material: File

Zhang et al. supplementary material

Zhang et al. supplementary material
Download Zhang et al. supplementary material(File)
File 23.1 MB