Hostname: page-component-65f69f4695-k2rjg Total loading time: 0 Render date: 2025-06-26T12:05:48.319Z Has data issue: false hasContentIssue false

Online optimization of minimum-time and minimum-energy trajectories for a 1-DOF belt-driven robotic system

Published online by Cambridge University Press:  23 June 2025

Giuliano Fabris
Affiliation:
Polytechnic Department of Engineering and Architecture, University of Udine, via delle Scienze, 206, Udine, Italy
Lorenzo Scalera*
Affiliation:
Polytechnic Department of Engineering and Architecture, University of Udine, via delle Scienze, 206, Udine, Italy
Alessandro Gasparetto
Affiliation:
Polytechnic Department of Engineering and Architecture, University of Udine, via delle Scienze, 206, Udine, Italy
*
Corresponding author: Lorenzo Scalera; Email: lorenzo.scalera@uniud.it

Abstract

Trajectory optimization is a critical research area in robotics and automation, especially in manufacturing industries where mechanical systems are often required to minimize the execution time or the consumed energy. In this context, the most common mechanical systems are those with a single degree of freedom because of their simplicity and ease of control. In this paper, we present an approach for the online optimization of minimum-time and minimum-energy trajectories for a robotic system with one degree of freedom. Point-to-point motions of the considered linear axis are planned online, without idle times, by leveraging a verified dynamic model of the robotic system, which also includes an accurate identification of friction parameters. Both minimum-time and minimum-energy trajectories are considered, and the performance of the online optimization using a selected open-source optimization tool is verified in different dynamic conditions of the system. The results of extensive experiments on a belt-driven robotic axis demonstrate the feasibility and the energy-saving capabilities of the proposed approach, as well as the flexibility of the online trajectory optimization in different scenarios, while meeting the kinematics and dynamics limits of the system and guaranteeing low computational time.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Liu, Z., Huang, Y., Liu, D., Guo, X., Wang, K. and Tan, J., “Trajectory planning of large redundant manipulator considering kinematic constraints and energy efficiency,” Robotica 41(11), 35243540 (2023).10.1017/S0263574723001157CrossRefGoogle Scholar
Scalera, L., Lozer, F., Giusti, A. and Gasparetto, A., “An experimental evaluation of robot-stopping approaches for improving fluency in collaborative robotics,” Robotica 42(5), 13861402 (2024).10.1017/S0263574724000262CrossRefGoogle Scholar
Zhang, C., Zhou, L. and Li, Y., “Decentralized method for real-time optimal path planning of robot in dynamic environment,” Robotica 43(3), 11401156 (2025).10.1017/S0263574725000098CrossRefGoogle Scholar
Li, X., Lan, Y., Jiang, P., Cao, H. and Zhou, J., “An efficient computation for energy optimization of robot trajectory,” IEEE Trans. Ind. Electron. 69(11), 1143611446 (2021).10.1109/TIE.2021.3118367CrossRefGoogle Scholar
Clochiatti, E., Scalera, L., Boscariol, P. and Gasparetto, A., “Electro-mechanical modeling and identification of the UR5 e-series robot,” Robotica 42(7), 24302452 (2024).10.1017/S0263574724000833CrossRefGoogle Scholar
Carabin, G. and Scalera, L., “On the trajectory planning for energy efficiency in industrial robotic systems,” Robotics 9(4), 89 (2020).10.3390/robotics9040089CrossRefGoogle Scholar
Vanbecelaere, F., Van Oosterwyck, N., Derammelaere, S., Cuyt, A., Monte, M. and Stockman, K., “On-line motion profile optimization for reciprocating mechanisms,” Mech. Mach. Theory 173, 104833 (2022).10.1016/j.mechmachtheory.2022.104833CrossRefGoogle Scholar
Vidussi, F., Boscariol, P., Scalera, L. and Gasparetto, A., “Local and trajectory-based indexes for task-related energetic performance optimization of robotic manipulators,” J. Mech. Robot. 13(2), 021018 (2021).10.1115/1.4049972CrossRefGoogle Scholar
Fabris, G., Scalera, L. and Gasparetto, A., “Dynamic modelling and energy-efficiency optimization in a 3-DOF parallel robot,” Int. J. Adv. Manuf. Technol. 132(5), 26772699 (2024).10.1007/s00170-024-13496-wCrossRefGoogle Scholar
Althoff, M., Giusti, A., Liu, S. B. and Pereira, A., “Effortless creation of safe robots from modules through self-programming and self-verification,” Sci. Robot. 4(31), eaaw1924 (2019).10.1126/scirobotics.aaw1924CrossRefGoogle ScholarPubMed
Shushtari, M., Nasiri, R., Yazdanpanah, M. J. and Ahmadabadi, M. N., “Compliance and frequency optimization for energy efficiency in cyclic tasks,” Robotica 35(12), 23632380 (2017).10.1017/S0263574717000030CrossRefGoogle Scholar
Khoramshahi, M., Nasiri, R., Shushtari, M., Ijspeert, A. J. and Ahmadabadi, M. N., “Adaptive natural oscillator to exploit natural dynamics for energy efficiency,” Robot. Auton. Syst. 97, 5160 (2017).10.1016/j.robot.2017.07.017CrossRefGoogle Scholar
Gadaleta, M., Pellicciari, M. and Berselli, G., “Optimization of the energy consumption of industrial robots for automatic code generation,” Robot. Cim.-INT Manuf. 57, 452464 (2019).10.1016/j.rcim.2018.12.020CrossRefGoogle Scholar
Ye, J., Hao, L. and Cheng, H., “Multi-objective optimal trajectory planning for robot manipulator attention to end-effector path limitation,” Robotica 42(6), 120 (2024).10.1017/S0263574724000481CrossRefGoogle Scholar
Wolf, S. and Feenders, J.-E.. Modeling and Benchmarking Energy Efficiency of Variable Stiffness Actuators on the Example of the DLR FSJ. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE ,2016) pp. 529536.10.1109/IROS.2016.7759104CrossRefGoogle Scholar
Richiedei, D. and Trevisani, A., “Analytical computation of the energy-efficient optimal planning in rest-to-rest motion of constant inertia systems,” Mechatronics 39, 147159 (2016).10.1016/j.mechatronics.2016.05.004CrossRefGoogle Scholar
Carabin, G. and Vidoni, R., “Energy-saving optimization method for point-to-point trajectories planned via standard primitives in 1-DoF mechatronic systems,” Int. J. Adv. Manuf. Technol. 116(1-2), 331344 (2021).10.1007/s00170-021-07277-yCrossRefGoogle Scholar
Halinga, M. S., Nyobuya, H. J. and Uchiyama, N., “Generation and experimental verification of time and energy optimal coverage motion for industrial machines using a modified s-curve trajectory,” Int. J. Adv. Manuf. Technol. 125(7), 35933605 (2023).10.1007/s00170-023-10912-5CrossRefGoogle Scholar
Clemen, L. and Rupp, C. J., “Single-and Multi-Degree-of-Freedom Servo Trajectory Generation: An Optimization Framework, Implementation, and Examples,” In: IEEE/ASME Int. Conf. Adv. Intell. Mech., (IEEE, 2023) pp. 10401047.10.1109/AIM46323.2023.10196221CrossRefGoogle Scholar
Maes, B., Yahya, A. B., Van Oosterwyck, N., Chevalier, A. and Derammelaere, S.. CAD-Based Co-Optimizations for Geometry and Motion Profile Towards Energy-Optimal Point-to-Point Mechanisms. In: 2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (IEEE ,2024) pp. 12341240.10.1109/AIM55361.2024.10637176CrossRefGoogle Scholar
Wang, Y., Zhao, Y., Bortoff, S. A. and Ueda, K., “A real-time energy-optimal trajectory generation method for a servomotor system,” IEEE Trans. Ind. Electron. 62(2), 11751188 (2014).10.1109/TIE.2014.2360077CrossRefGoogle Scholar
Donà, D., Lenzo, B., Boscariol, P. and Rosati, G., “A real-time capable method for planning minimum energy trajectories for one degree-of-freedom mechatronic systems,” Control Eng. Pract. 142, 105766 (2024).10.1016/j.conengprac.2023.105766CrossRefGoogle Scholar
Fabris, G., Scalera, L. and Gasparetto, A.. Online Optimization and Trajectory Planning for Energy Efficiency in a Robotic Linear Axis. In: 5th International Conference of IFToMM Italy, IFIT 2024. Mechanisms and Machine Science, volume 164 MMS (Springer, 2024) pp. 155162.10.1007/978-3-031-64569-3_19CrossRefGoogle Scholar
Bittencourt, A. C. and Gunnarsson, S., “Static friction in a robot joint—Modeling and identification of load and temperature effects,” J. Dyn. Syst., Meas., Control 134(5), 051013 (2012).10.1115/1.4006589CrossRefGoogle Scholar
Grotjahn, M., Daemi, M. and Heimann, B., “Friction and rigid body identification of robot dynamics,” Int. J. Solids Struct. 38(10-13), 18891902 (2001).10.1016/S0020-7683(00)00141-4CrossRefGoogle Scholar
Hao, L., Pagani, R., Beschi, M. and Legnani, G., “Dynamic and friction parameters of an industrial robot: Identification, comparison and repetitiveness analysis,” Robotics 10(1), 49 (2021).10.3390/robotics10010049CrossRefGoogle Scholar
De Wit, C. C., Olsson, H., Astrom, K. J. and Lischinsky, P., “A new model for control of systems with friction,” IEEE Trans. Automat. Control 40(3), 419425 (1995).10.1109/9.376053CrossRefGoogle Scholar
Fabris, G., Scalera, L., Boscariol, P. and Gasparetto, A.. Experimental analysis and comparison of friction models applied to the UR5e robot. In: 6th IFToMM International Symposium on Mechanism Design for Robotics, MEDER 2024. Mechanisms and Machine Science. volume 166 MMS (Springer, 2024) pp. 125133.10.1007/978-3-031-67383-2_13CrossRefGoogle Scholar
Luo, R., Yuan, J., Hu, Z., Du, L., Bao, S. and Zhou, M., “Lie-theory-based dynamic model identification of serial robots considering nonlinear friction and optimal excitation trajectory,” Robotica 42(10), 118 (2024).10.1017/S0263574724001541CrossRefGoogle Scholar
Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B. and Diehl, M., “CasADi: A software framework for nonlinear optimization and optimal control,” Math. Program. Comput. 11(1), 136 (2019).10.1007/s12532-018-0139-4CrossRefGoogle Scholar
Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D., Watson, J.-P. and Woodruff, D. L.. Pyomo–optimization Modeling in Python, vol. 67, 3rd edition (Berlin, Springer, 2021).10.1007/978-3-030-68928-5CrossRefGoogle Scholar
Hart, W. E., Watson, J.-P. and Woodruff, D. L., “Pyomo: Modeling and solving mathematical programs in Python,” Math. Program. Comput. 3(3), 219260 (2011).10.1007/s12532-011-0026-8CrossRefGoogle Scholar
Supplementary material: File

Fabris et al. supplementary material

Fabris et al. supplementary material
Download Fabris et al. supplementary material(File)
File 16.5 MB