Hostname: page-component-cb9f654ff-h4f6x Total loading time: 0 Render date: 2025-09-05T06:20:41.474Z Has data issue: false hasContentIssue false

A review of LiDAR simultaneous localization and mapping techniques for multi-robot

Published online by Cambridge University Press:  01 September 2025

Rui Yuan*
Affiliation:
School of Computer Science and Artificial Intelligence, Zhengzhou University, Zhengzhou, China
Bo Ji
Affiliation:
School of Computer Science and Artificial Intelligence, Zhengzhou University, Zhengzhou, China
Yuheng Gao
Affiliation:
School of Computer Science and Artificial Intelligence, Zhengzhou University, Zhengzhou, China
Honghui Tao
Affiliation:
School of Computer Science and Artificial Intelligence, Zhengzhou University, Zhengzhou, China
*
Corresponding author: Rui Yuan; Email: rrryuan@outlook.com

Abstract

Simultaneous localization and mapping technology is the basis for multi-robot systems to complete navigation, path planning, and autonomous exploration in complex, dynamic, and Global Positioning System (GPS)-denied environments. This paper reviews the current status and progress of multi-robot simultaneous localization and mapping (SLAM) technology based on LiDAR. First, this paper studies the basic principles of LiDAR SLAM. It analyzes the system model construction of LiDAR SLAM, including the mobile robot coordinate system model, kinematic model, sensor model, map presentation, LiDAR SLAM framework, and classic algorithms. Then, this paper discusses the basic framework of collaborative SLAM, analyzes the key issues such as data association, loop closure detection, and global graph optimization in collaborative SLAM, and conducts a detailed literature review on the solutions to key problems in sub-fields of multi-robot SLAM such as frontier detection, task allocation, map fusion, and compares the advantages and disadvantages of various algorithms. Finally, this paper outlines the challenges and future research directions of multi-robot LiDAR SLAM.

Information

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Durrant-Whyte, H. and Bailey, T., “Simultaneous localization and mapping: Part I,” IEEE Rob. Autom. Mag. 13(2), 99110 (2006).10.1109/MRA.2006.1638022CrossRefGoogle Scholar
Smith, R., Self, M. and Cheeseman, P., “Estimating uncertain spatial relationships in robotics,” Mach. Intell. Pattern Recogn. 5(5), 435461 (1988). Elsevier.Google Scholar
Leonard, J. J. and Durrant-Whyte, H. F., “Mobile robot localization by tracking geometric beacons,” IEEE Trans. Rob. Autom. 7(3), 376382 (1991).10.1109/70.88147CrossRefGoogle Scholar
Zhang, Y., Zhao, S. and An, D., “An efficient LiDAR-based localization method for self-driving cars in dynamic environments,” Robotica 40(1), 3855 (2022).10.1017/S0263574721000369CrossRefGoogle Scholar
Liu, Q., Di, X. and Xu, B., “Autonomous vehicle self-localization in urban environments based on 3D curvature feature points–Monte carlo localization,” Robotica 40(3), 817833 (2022).10.1017/S0263574721000862CrossRefGoogle Scholar
Elmokadem, T. and Savkin, A. V., “A method for autonomous collision-free navigation of a quadrotor UAV in unknown tunnel-like environments,” Robotica 40(4), 835861 (2022).10.1017/S0263574721000849CrossRefGoogle Scholar
Palomeras, N., Carreras, M. and Andrade-Cetto, J., “Active SLAM for autonomous underwater exploration,” Remote Sens-BASEL 11(23), 2827 (2019).10.3390/rs11232827CrossRefGoogle Scholar
Zhang, S., Zhao, S. and An, D., “Visual SLAM for underwater vehicles: A survey,” Comput. Sci. Rev. 46, 100510 (2022).10.1016/j.cosrev.2022.100510CrossRefGoogle Scholar
Wang, H., Zhang, C., Song, Y., “Three-dimensional reconstruction based on visual SLAM of mobile robot in search and rescue disaster scenarios,” Robotica 38(2), 350373 (2020).10.1017/S0263574719000675CrossRefGoogle Scholar
Wang, Y. and Zhang, W., “Research progress on SLAM technology in unstructured lunar complex environments,” J. Zhengzhou Univ. (Eng. Sci.). 39(003), 4550 (2018).Google Scholar
Yi, K. and Shen, Y., “A survey on laser SLAM navigation and mobile robot localization algorithms,” Rob. Technol. Appl. 5, 2528 (2019).Google Scholar
Hu, Y., Zhou, Q., Miao, Z., “Outdoor LiDAR-inertial SLAM using ground constraints,” Robotica 42(4), 12461261 (2024).10.1017/S0263574724000237CrossRefGoogle Scholar
Choi, K. S. and Lee, S. G., “An enhanced CSLAM for multi-robot based on unscented Kalman filter,” Int. J. Control Autom. Syst. 10(1), 102108 (2012).10.1007/s12555-012-0111-4CrossRefGoogle Scholar
Liu, W., “SLAM algorithm for multi-robot communication in unknown environment based on particle filter,” J. Amb. Intell. Hum. Comput., 19 (2021).10.1007/s12652-021-03020-3CrossRefGoogle Scholar
Dubois, R., Eudes, A. and Frémont, V., “Sharing visual-inertial data for collaborative decentralized simultaneous localization and mapping,” Rob. Auton. Syst. 148, 103933 (2022). Elsevier.10.1016/j.robot.2021.103933CrossRefGoogle Scholar
Li, Z., He, B., Zhang, L. and Zhang, J., “Multi-robot CSLAM in the Unknown Environment,” IEEE International Conference on Information and Automation (ICIA) (IEEE, 2018) pp. 4550.Google Scholar
Zou, D., Tan, P. and Yu, W., “Collaborative visual SLAM for multiple agents: A brief survey,”Virtual,” Reality Intell. Hardware 1(5), 461482 (2019).10.1016/j.vrih.2019.09.002CrossRefGoogle Scholar
Cheng, J., Zhang, L., Chen, Q., “A review of visual SLAM methods for autonomous driving vehicles,” Eng. Appl. Artif. Intell. 114, 104992 (2022).10.1016/j.engappai.2022.104992CrossRefGoogle Scholar
Wang, K., Zhao, G. and Lu, J., “A deep analysis of visual SLAM methods for highly automated and autonomous vehicles in complex urban environment,” IEEE Trans. Intell. Transp. Syst. 25(9), 1052410541 (2024).10.1109/TITS.2024.3379993CrossRefGoogle Scholar
Zheng, Z., Su, K., Lin, S., “Development of vision–based SLAM: From traditional methods to multimodal fusion,” Rob. Intell. Autom. 44(4), 529548 (2024).Google Scholar
Huang, L., “Review on LiDAR-based SLAM Techniques,” 2021 International Conference on Signal Processing and Machine Learning (CONF-SPML) (IEEE, 2021) pp. 163168.10.1109/CONF-SPML54095.2021.00040CrossRefGoogle Scholar
Xu, X., Zhang, L., Yang, J., “A review of multi-sensor fusion SLAM systems based on 3D LIDAR,” Remote Sens-BASEL 14(12), 2835 (2022).10.3390/rs14122835CrossRefGoogle Scholar
Yue, X., Zhang, Y., Chen, J., Chen, J., Zhou, X. and He, M., “LiDAR-based SLAM for robotic mapping: State of the art and new frontiers,” Ind. Robot: Int. J. Rob. Res. Appl. 51(2), 196205 (2024).10.1108/IR-09-2023-0225CrossRefGoogle Scholar
Rizk, Y., Awad, M. and Tunstel, E. W., “Cooperative heterogeneous multi-robot systems: A survey,” ACM Comput. Surv. (CSUR) 52(2), 131 (2019).10.1145/3303848CrossRefGoogle Scholar
Zhao, X., Shao, S., Wang, T., Fang, C., Zhang, J. and Zhao, H., “A Review of Multi-robot Collaborative Simultaneous Localization and Mapping,” 2023 IEEE International Conference on Unmanned Systems (ICUS) (2023) pp. 900905.Google Scholar
Aloui, K., Guizani, A., Hammadi, M., Haddar, M. and Soriano, T., “Systematic Literature Review of Collaborative SLAM Applied to Autonomous Mobile Robots,” 2022 IEEE Information Technologies & Smart Industrial Systems (ITSIS) (2022) pp. 15.Google Scholar
Lajoie, P.-Y., Ramtoula, B., Wu, F. and Beltrame, G., “Towards Collaborative Simultaneous Localization and Mapping: A Survey of the Current Research Landscape,” arXiv preprint arXiv:2108.08325 (2021).10.55417/fr.2022032CrossRefGoogle Scholar
Zhang, Y., Shi, P. and Li, J., “3D LiDAR SLAM: A survey,” Photogramm. Rec. 39(186), 457517 (2024).10.1111/phor.12497CrossRefGoogle Scholar
Zhang, Y., Shi, P. and Li, J., “LiDAR-based place recognition for autonomous driving: A survey,” ACM Comput. Surv. 57(4), 136 (2024).Google Scholar
Chen, W., Wang, X., Gao, S., Shang, G., Zhou, C., Li, Z., Xu, C. and Hu, K., “Overview of multi-robot collaborative SLAM from the perspective of data fusion,” Machines 11(6), 653 (2023).10.3390/machines11060653CrossRefGoogle Scholar
Zhu, F., Research on Indoor Environment Perception and Map Building for Mobile Robots Based on SLAM Master’s Thesis (Guangdong University of Technology, 2016).Google Scholar
Zhao, X., Research on Simultaneous Localization and Indoor Map Building Algorithms Based on LIDAR Master’s Thesis (Harbin Institute of Technology, 2017).Google Scholar
Hang, T., Research on Indoor Mobile Robots Based on Ground Feature Navigation Master’s thesis (Soochow University, 2020).Google Scholar
Zhou, G., Research on SLAM Algorithms for Mobile Robots Based on LIDAR Navigation Master’s thesis (Zhejiang University, 2021).Google Scholar
Qin, Z., Research on Map Building Method for Mobile Robots by Fusing WiFi and LIDAR Master’s thesis (Southwest University of Science and Technology, 2022).Google Scholar
Li, S., Wang, L., Li, J., “3D LiDAR/IMU calibration based on continuous-time trajectory estimation in structured environments,” IEEE Access 9, 138803138816 (2021). doi: 10.1109/ACCESS.2021.3117966.CrossRefGoogle Scholar
Huang, H., Zhang, X., Yang, J., “Research on sensor fusion-based calibration and real-time point cloud mapping methods for laser liDAR and IMU,” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 48, 11991206 (2023).10.5194/isprs-archives-XLVIII-1-W2-2023-1199-2023CrossRefGoogle Scholar
Zhang, L., Zhang, L., Gao, R., “Indoor mobile robot localization applying IMU/stereo camera/LiDAR and graph-based optimization,” IEEE Sens. J. 24(13), 2146621478 (2024).10.1109/JSEN.2024.3400269CrossRefGoogle Scholar
Zhang, Y., “LILO: A novel lidar–IMU SLAM system with loop optimization,” IEEE Trans. Aerospace Electron. Syst. 58(4), 26492659 (2022). doi: 10.1109/TAES.2021.3135234.CrossRefGoogle Scholar
Brossard, M. and Bonnabel, S., “Learning Wheel Odometry and IMU Errors for Localization,” Proceedings of the 2019 International Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp. 291297. doi: 10.1109/ICRA.2019.8794237.CrossRefGoogle Scholar
Wei, Y., Real-Time Localization and Mapping Techniques Based on LIDAR Master’s Thesis (Harbin Institute of Technology, 2017).Google Scholar
Yoneda, K., Tehrani, H., Ogawa, T., Hukuyama, N. and Mita, S., “Lidar Scan Feature for Localization with Highly Precise 3-D Map,” IEEE Intelligent Vehicles Symposium Proceedings (IEEE, 2014) pp. 13451350.Google Scholar
Lu, J., Research on Engineering Applications of SLAM for Mobile Robots Based on LIDAR Master’s thesis (Shanghai Jiao Tong University, 2020).Google Scholar
Wang, W., Research on Autonomous Navigation Path Planning Algorithm Based on Multi-Sensor Information Fusion Master’s thesis (Hebei University of Architecture and Engineering, 2022).Google Scholar
Zheng, Y., Simulation Study on Autonomous Navigation Algorithm for Mobile Robots Based on LIDAR SLAM Master’s thesis (Harbin University of Commerce, 2022).Google Scholar
Moravec, H. P., “Sensor fusion in certainty grids for mobile robots,” AI Mag. 9(2), 6161 (1988).Google Scholar
Kim, P., Chen, J. and Cho, Y. K., “SLAM-driven robotic mapping and registration of 3D point clouds,” Autom. Constr. 89, 3848 (2018). Elsevier.10.1016/j.autcon.2018.01.009CrossRefGoogle Scholar
Elfes, A., “Using occupancy grids for mobile robot perception and navigation,” Computer 22(6), 4657 (1989). IEEE.10.1109/2.30720CrossRefGoogle Scholar
Cai, Y., Kong, F., Ren, Y., Zhu, F., Lin, J. and Zhang, F., “Occupancy grid mapping without ray-casting for high-resolution LiDAR sensors,” IEEE Trans. Rob. 40, 172192 (2023).10.1109/TRO.2023.3323936CrossRefGoogle Scholar
Shienman, M., Kitanov, A. and Indelman, V., “Ft-bsp: Focused topological belief space planning,” IEEE Rob. Autom. Lett. 6(3), 47444751 (2021). IEEE.10.1109/LRA.2021.3068947CrossRefGoogle Scholar
Wang, T., Shang, G. and Gao, S., “Research on multi-robot SLAM map fusion method based on heuristics,” J. Syst. Simul. 34(7), 14491458 (2022).Google Scholar
Bao, Y., Pan, Y., Yang, Z. and Huan, R., “Utilization of semantic planes: Improved localization and dense semantic map for monocular SLAM in urban environment,” IEEE Rob. Autom. Lett. 6(3), 61086115 (2021). IEEE.10.1109/LRA.2021.3091396CrossRefGoogle Scholar
Qin, T., Zheng, Y., Chen, T., Chen, Y. and Su, Q., “A Light-Weight Semantic Map for Visual Localization Towards Autonomous Driving,” IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2021) pp. 1124811254.Google Scholar
Zhang, Y., Tian, G., Shao, X., Liu, S., Zhang, M. and Duan, P., “Building metric-topological map to efficient object search for mobile robot,” IEEE Trans. Ind. Electron. 69(7), 70767087 (2021). IEEE.10.1109/TIE.2021.3095812CrossRefGoogle Scholar
Kuang, H., Li, Y., Zhang, Y., “Research on rapid location method of mobile robot based on semantic grid map in large scene similar environment,” Robotica 40(11), 40114030 (2022).10.1017/S026357472200073XCrossRefGoogle Scholar
Wu, S., Simultaneous Localization and Mapping in Unknown Indoor Environments Using Laser Radar Master’s thesis (Guangxi University, 2020).Google Scholar
Song, S., SLAM Algorithm Design for Indoor Mobile Robots Master’s thesis (Harbin Institute of Technology, 2019).Google Scholar
Liang, S., Cao, Z., Wang, C. and Yu, J., “A novel 3D LiDAR SLAM based on directed geometry point and sparse frame,” IEEE Rob. Autom. Lett. 6(2), 374381 (2020). IEEE.10.1109/LRA.2020.3043200CrossRefGoogle Scholar
Besl, P. J. and McKay, N. D., “Method for Registration of 3-D Shapes,” In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611 (SPIE, 1992) pp. 586606.10.1117/12.57955CrossRefGoogle Scholar
Chen, Y. and Medioni, G., “Object modelling by registration of multiple range images,” Image Vis. Comput. 10(3), 145155 (1992). Elsevier.10.1016/0262-8856(92)90066-CCrossRefGoogle Scholar
Qi, J., SLAM Algorithm Design and Implementation for Unmanned Vehicle Based on LIDAR Master’s thesis (Harbin Institute of Technology, 2021).Google Scholar
Low, K. L., “Linear least-squares optimization for point-to-plane ICP surface registration,” Chapel Hill Univ. N. C. 4(10), 13 (2004).Google Scholar
Phillips, J. M., Liu, R. and Tomasi, C., “Outlier Robust ICP for Minimizing Fractional RMSD,” Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007) (IEEE, 2007) pp. 427434.10.1109/3DIM.2007.39CrossRefGoogle Scholar
Nicolai, A., Skeele, R., Eriksen, C. and Hollinger, G. A., “Deep Learning for Laser Based Odometry Estimation,” RSS Workshop Limits and Potentials of Deep Learning in Robotics, vol. 184 (2016) p. 1.Google Scholar
Zhang, J. and Singh, S., “LOAM: Lidar odometry and mapping in real-time,” Rob.: Sci. Syst. 2(9), 19 (2014). Berkeley, CA.Google Scholar
Chiang, K., Chiu, Y., Srinara, S. and Tsai, M., “Performance of LiDAR-SLAM-based PNT with initial poses based on NDT scan matching algorithm,” Satell. Navig. 4(1), 3 (2023). Springer.10.1186/s43020-022-00092-0CrossRefGoogle Scholar
Liu, M., Xu, G., Tang, T., Qian, X. and Geng, M., “A survey of laser SLAM algorithms,” J. Comput. Eng. Appl. 60(1) (2024).Google Scholar
Magnusson, M., The Three-Dimensional Normal-Distributions Transform: An Efficient Representation for Registration, Surface Analysis, and Loop Detection PhD thesis (Örebro Universitet, 2009).Google Scholar
Du, S., Chen, T., Lou, Z., “A 2D-LiDAR-based localization method for indoor mobile robots using correlative scan matching,” Robotica. 43(2), 128 (2024).Google Scholar
Tee, Y. K. and Han, Y. C., “Lidar-based 2D SLAM for Mobile Robot in an Indoor Environment: A Review,” International Conference on Green Energy, Computing and Sustainable Technology (GECOST) (IEEE, 2021) pp. 17.10.1109/GECOST52368.2021.9538731CrossRefGoogle Scholar
Grooms, I., “A comparison of nonlinear extensions to the ensemble Kalman filter: Gaussian anamorphosis and two-step ensemble filters,” Comput. Geosci. 26(3), 633650 (2022). Springer.10.1007/s10596-022-10141-xCrossRefGoogle Scholar
Fang, Y., Panah, A., Masoudi, J., Barzegar, B. and Fatehi, S., “Adaptive unscented Kalman filter for robot navigation problem (Adaptive unscented Kalman filter using incorporating intuitionistic fuzzy logic for concurrent localization and mapping),” IEEE Access 10, 101869101879 (2022). IEEE.10.1109/ACCESS.2022.3207925CrossRefGoogle Scholar
Grabowski, R., Khosla, P. and Choset, H., “Autonomous Exploration via Regions of Interest,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 2 (IEEE, 2003) pp. 16911696.10.1109/IROS.2003.1248887CrossRefGoogle Scholar
Ebadi, K., Bernreiter, L., Biggie, H., “Present and Future of SLAM in Extreme Underground Environments,” arXiv preprint arXiv:2208.01787 (2022).Google Scholar
Grisetti, G., Stachniss, C. and Burgard, W., “Improved techniques for grid mapping with Rao-Blackwellized particle filters,” IEEE Trans. Rob. 23(1), 3446 (2007).10.1109/TRO.2006.889486CrossRefGoogle Scholar
Kohlbrecher, S., Von Stryk, O., Meyer, J. and Klingauf, U., “A Flexible and Scalable SLAM System with full 3D Motion Estimation,” 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (IEEE, Kyoto, Japan, 2011) pp. 155160.10.1109/SSRR.2011.6106777CrossRefGoogle Scholar
Konolige, K., “Efficient Sparse Pose Adjustment for 2D Mapping,” 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2010).10.1109/IROS.2010.5649043CrossRefGoogle Scholar
Hess, W., Kohler, D., Rapp, H. and Andor, D., “Real-Time Loop Closure in 2D LIDAR SLAM,” 2016 IEEE International Conference on Robotics and Automation (ICRA) (IEEE Stockholm, Sweden, 2016) pp. 12711278.10.1109/ICRA.2016.7487258CrossRefGoogle Scholar
Rogers, J. G., Gregory, J. M., Fink, J. and Stump, E., “Test Your SLAM! The subT-Tunnel Dataset and Metric for Mapping,” 2020 IEEE International Conference on Robotics and Automation (ICRA) (2020) pp. 955961. doi: 10.1109/ICRA40945.2020.9197156.CrossRefGoogle Scholar
Shan, T. and Englot, B., “LeGO-LOAM: Lightweight and Ground-Optimized LiDAR Odometry and Mapping on Variable Terrain,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Madrid, 2018) pp. 47584765.10.1109/IROS.2018.8594299CrossRefGoogle Scholar
Fasiolo, D., Tiozzo, L., Scalera, L. and Maset, E., “Comparing LiDAR and IMU-based SLAM approaches for 3D robotic mapping,” Robotica 41(9), 25882604 (2023).10.1017/S026357472300053XCrossRefGoogle Scholar
Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C. and Rus, D., “LIO-SAM: Tightly-Coupled Lidar Inertial Odometry via Smoothing and Mapping,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Las Vegas, NV, USA, 2020) pp. 51355142.Google Scholar
Xu, W. and Zhang, F., “FAST-LIO: A fast, robust LiDAR-inertial odometry package by tightly-coupled iterated Kalman filter,” IEEE Rob. Autom. Lett. 6(2), 33173324 (2021).10.1109/LRA.2021.3064227CrossRefGoogle Scholar
Xu, W., Cai, Y., He, D., “Fast-LIO2: Fast direct LiDAR-inertial odometry,” IEEE Trans. Rob. 38(4), 20532073 (2022).10.1109/TRO.2022.3141876CrossRefGoogle Scholar
Reinke, A., Palieri, M., Morrell, B., “Locus 2.0: Robust and computationally efficient LiDAR odometry for real-time 3D mapping,” IEEE Rob. Autom. Lett. 7(4), 90439050 (2022).10.1109/LRA.2022.3181357CrossRefGoogle Scholar
Saeedi, S., Trentini, M., Seto, M., “Multiple-robot simultaneous localization and mapping: A review,” J. Field Rob. 33(1), 346 (2016).10.1002/rob.21620CrossRefGoogle Scholar
Schmuck, P. and Chli, M., “CCM-SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams,” J. Field Rob. 36(4), 763781 (2019).10.1002/rob.21854CrossRefGoogle Scholar
Xie, J., He, X., Mao, J., “C2VIR-SLAM: Centralized collaborative visual-inertial-range simultaneous localization and mapping,” Drones 6(11), 312 (2022).10.3390/drones6110312CrossRefGoogle Scholar
Saha, A., Dhara, B. C., Umer, S., “Corb2i-SLAM: An adaptive collaborative visual-inertial SLAM for multiple robots,” Electronics 11(18), 2814 (2022).10.3390/electronics11182814CrossRefGoogle Scholar
Chang, Y., Ebadi, K., Denniston, C. E., “LAMP 2.0: A robust multi-robot SLAM system for operation in challenging large-scale underground environments,” IEEE Rob. Autom. Lett. 7(4), 91759182 (2022).10.1109/LRA.2022.3191204CrossRefGoogle Scholar
Liu, E., Li, H., Li, S., “Centralized Multi-Robot Collaborative LiDAR SLAM Utilizing Loop Closure Selection,” 2023 China Automation Congress (CAC) (IEEE, 2023) pp. 463468.10.1109/CAC59555.2023.10450881CrossRefGoogle Scholar
Jalil, B. A. and Ibraheem, I. K., “Enhancing multi-robot SLAM: Centralized liDAR-based loop closure detection approach,” Iraqi J. Comput. Sci. Math. 5(4), 24 (2024).Google Scholar
Zhong, S., Chen, H., Qi, Y., “Colrio: Lidar-Ranging-Inertial Centralized State Estimation for Robotic Swarms,” 2024 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2024) pp. 39203926.10.1109/ICRA57147.2024.10611672CrossRefGoogle Scholar
Xie, Y., Zhang, Y., Chen, L., “RDC-SLAM: A real-time distributed cooperative SLAM system based on 3D liDAR,” IEEE Trans. Intell. Transp. 23(9), 1472114730 (2021).10.1109/TITS.2021.3132375CrossRefGoogle Scholar
Huang, Y., Shan, T., Chen, F., “Disco-slam: Distributed scan context-enabled multi-robot lidar slam with two-stage global-local graph optimization,” IEEE Rob. Autom. Lett. 7(2), 11501157 (2021).10.1109/LRA.2021.3138156CrossRefGoogle Scholar
Xie, H., Zhang, D., Hu, X., “Autonomous multirobot navigation and cooperative mapping in partially unknown environments,” IEEE Trans. Instrum. Meas. 72, 112 (2023).Google Scholar
Lajoie, P. Y., Ramtoula, B., Chang, Y., “DOOR-SLAM: Distributed, online, and outlier resilient SLAM for robotic teams,” IEEE Rob. Autom. Lett. 5(2), 16561663 (2020).10.1109/LRA.2020.2967681CrossRefGoogle Scholar
Zhong, S., Qi, Y., Chen, Z., “Dcl-slam: A distributed collaborative lidar slam framework for a robotic swarm,” IEEE Sens. J. 24(4), 47864797 (2023).10.1109/JSEN.2023.3345541CrossRefGoogle Scholar
Lajoie, P. Y. and Beltrame, G., “Swarm-SLAM: Sparse decentralized collaborative simultaneous localization and mapping framework for multi-robot systems,” IEEE Rob. Autom. Lett. 9(1), 475482 (2023).10.1109/LRA.2023.3333742CrossRefGoogle Scholar
Ahlström, S. and Schmidt, M., “Collaborative SLAM for ground robotics in search and rescue missions (2024).Google Scholar
Liu, D., “A data association algorithm for SLAM based on central difference joint compatibility criterion and clustering,” Robotica 39(9), 16741691 (2021).10.1017/S0263574720001435CrossRefGoogle Scholar
Li, C., Guo, G., Yi, P. and Hong, Y., “Distributed pose-graph optimization with multi-level partitioning for multi-robot SLAM,” IEEE Rob. Autom. Lett. 9(6), 49264933 (2024). doi: 10.1109/LRA.2024.3382531.CrossRefGoogle Scholar
He, K., Jia, R., Hong, H., “LDG-CSLAM: Multi-robot collaborative SLAM based on curve analysis, normal distribution, and factor graph optimization,” J. Field Rob. 42(5), 21732191 (2025).10.1002/rob.22509CrossRefGoogle Scholar
Shin, Y., Park, Y. and Kim, A., “Direct Visual SLAM Using Sparse Depth for Camera-LiDAR System,” Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21-25 May 2018, Brisbane, QLD, Australia (2018) pp. 51445151.Google Scholar
Tian, Y., Chang, Y., Arias, F. H., Nieto-Granda, C., How, J. P. and Carlone, L., “Kimera-multi: Robust, distributed, dense metric-semantic SLAM for multi-robot systems,” IEEE Trans. Rob. 38(4), 20222038 (2022). doi: 10.1109/TRO.2021.3137751.CrossRefGoogle Scholar
Liu, P., Bi, Y., Shi, J., Zhang, T. and Wang, C., “Semantic-assisted LiDAR tightly coupled SLAM for dynamic environments,” IEEE Access 12, 3404234053 (2024). doi: 10.1109/ACCESS.2024.3369183.CrossRefGoogle Scholar
Yan, J., Lin, X., Ren, Z., “Mui-tare: Cooperative multi-agent exploration with unknown initial position,” IEEE Rob. Autom. Lett. 8(7), 42994306 (2023).10.1109/LRA.2023.3281262CrossRefGoogle Scholar
Tian, Y., Khosoussi, K., Giamou, M., “Near-optimal budgeted data exchange for distributed loop closure detection. arXiv preprint, arXiv:1806.00188 (2018).10.15607/RSS.2018.XIV.071CrossRefGoogle Scholar
Wang, H., Wang, C. and Xie, L., “Intensity Scan Context: Coding Intensity and Geometry Relations for Loop Closure Detection,” 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France (2020). doi: 10.1109/ICRA40945.2020.9196764.CrossRefGoogle Scholar
Zhu, D., Xu, G., Wang, X., Liu, X. and Tian, D., “PairCon-SLAM: Distributed, online, and real-time RGBD-SLAM in large scenarios,” IEEE Trans. Instrum. Meas. 70, 114 (2021).Google Scholar
Shan, T., Englot, B., Duarte, F., Ratti, C. and Rus, D., “Robust Place Recognition Using an Imaging LiDAR,” 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China (2021) pp. 54695475. doi: 10.1109/ICRA48506.2021.9562105.CrossRefGoogle Scholar
Chen, Z., Zhao, J., Feng, T., “Robust loop closure selection based on inter-robot and intra-robot consistency for multi-robot map fusion,” Remote Sens-BASEL 15(11), 19 (2023). doi: 10.3390/rs15112796.Google Scholar
Ebadi, K., Bernreiter, L., Biggie, H. Present and future of SLAM in extreme environments: The DARPA SubT challenge,” IEEE Trans. Rob. 40, 936959 (2023).10.1109/TRO.2023.3323938CrossRefGoogle Scholar
Shin, G., Sim, H., Nam, S., Kim, Y., Heo, J. and Kim, K.-K. K., “Multi-robot relative pose estimation in SE(2) with observability analysis: A comparison of extended Kalman filtering and robust pose graph optimization,” IEEE Trans. Intell. Veh., 123 (2024). doi: 10.1109/TIV.2024.3478290.CrossRefGoogle Scholar
Bai, R., Yuan, S., Guo, H., Yin, P., Yau, W.-Y. and Xie, L., “Multi-robot Active Graph Exploration with Reduced Pose-SLAM Uncertainty via Submodular Optimization,” 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2024) pp. 1022910236. doi: 10.1109/IROS58592.2024.10802691.CrossRefGoogle Scholar
Choudhary, S., Carlone, L., Nieto, C., Rogers, J., Christensen, H. I. and Dellaert, F., “Distributed Trajectory Estimation with Privacy and Communication Constraints: A Two-Stage Distributed Gauss-Seidel Approach,” 2016 IEEE International Conference on Robotics and Automation (ICRA) (2016) pp. 52615268. doi: 10.1109/ICRA.2016.7487736.CrossRefGoogle Scholar
Choudhary, S., Carlone, L., Nieto, C., “Distributed mapping with privacy and communication constraints: Lightweight algorithms and object-based models,” Int. J. Rob. Res. 36(12), 12861311 (2017).10.1177/0278364917732640CrossRefGoogle Scholar
Fan, T. and Murphey, T. D., “Majorization minimization methods for distributed pose graph optimization,” IEEE Trans. Rob. 40, 2242 (2024). doi: 10.1109/TRO.2023.3324818.CrossRefGoogle Scholar
Oršulić, J., Miklić, D. and Kovačić, Z., “Efficient dense frontier detection for 2-D graph slam based on occupancy grid submaps,” IEEE Rob. Autom. Lett. 4(4), 35693576 (2019). IEEE.10.1109/LRA.2019.2928203CrossRefGoogle Scholar
Yamauchi, B., “A Frontier-based Approach for Autonomous Exploration,” Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97: Towards New Computational Principles for Robotics and Automation (1997) pp. 146151.Google Scholar
Keidar, M. and Kaminka, G. A., “Efficient frontier detection for robot exploration,” Int. J. Rob. Res. 33 (2), 215236 (2014). SAGE Publications.10.1177/0278364913494911CrossRefGoogle Scholar
Keidar, M. and Kaminka, G. A., “Robot Exploration with Fast Frontier Detection: Theory and Experiments,” Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 1 (2012) pp. 113120.Google Scholar
Quin, P., Alempijevic, A., Paul, G. and Liu, D., “Expanding Wavefront Frontier Detection: An Approach for Efficiently Detecting Frontier Cells,” Australasian Conference on Robotics and Automation, ACRA (2014).Google Scholar
Quin, P., Nguyen, D. D. K., Vu, T. L., “Approaches for efficiently detecting frontier cells in robotics exploration,” Front. Rob. AI 8, article616470 (2021).10.3389/frobt.2021.616470CrossRefGoogle ScholarPubMed
Sun, Z., Wu, B., Xu, C., Sarma, S. E., Yang, J. and Kong, H., “Frontier Detection and Reachability Analysis for Efficient 2D Graph-SLAM Based Active Exploration,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020) pp. 20512058.Google Scholar
Umari, H. and Mukhopadhyay, S., “Autonomous Robotic Exploration Based on Multiple Rapidly-Exploring Randomized Trees,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017) pp. 13961402.Google Scholar
Pimentel, J. M., Alvim, M. S., Campos, M. F. and Macharet, D. G., “Information-driven rapidly-exploring random tree for efficient environment exploration,” J. Intell. Rob. Syst. 91(2), 313331 (2018). Springer.10.1007/s10846-017-0709-0CrossRefGoogle Scholar
Zhang, L., Lin, Z., Wang, J. and He, B., “Rapidly-exploring random trees multi-robot map exploration under optimization framework,” Rob. Auton. Syst. 131, 103565 (2020). Elsevier.10.1016/j.robot.2020.103565CrossRefGoogle Scholar
Qiao, W., Fang, Z. and Si, B., “A sampling-based multi-tree fusion algorithm for frontier detection,” Int. J. Adv. Rob. Syst. 16(4) (2019). doi: 10.1177/1729881419865427. SAGE Publications.Google Scholar
Qiao, W., Fang, Z. and Si, B., “Sample-based Frontier Detection for Autonomous Robot Exploration,” IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2018) pp. 11651170.Google Scholar
Xu, G., Zhang, L., Chen, M., “Hybrid Frontier Detection Strategy for Autonomous Exploration in Multi-obstacles Environment,” 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2021) pp. 19091915.10.1109/ROBIO54168.2021.9739463CrossRefGoogle Scholar
Sun, Z., Wu, B., Xu, C., “Ada-Detector: Adaptive Frontier Detector for Rapid Exploration,” 2022 International Conference on Robotics and Automation (ICRA) (IEEE, 2022) pp. 37063712.10.1109/ICRA46639.2022.9811614CrossRefGoogle Scholar
Liu, J., Lv, Y., Yuan, Y., Chi, W., Chen, G. and Sun, L., “An efficient robot exploration method based on heuristics biased sampling,” IEEE Trans. Ind. Electron. 70(7), 71027112 (2022). IEEE.10.1109/TIE.2022.3203762CrossRefGoogle Scholar
Ning, Y., Li, T., Yao, C., Du, W. and Zhang, Y., “HMS-RRT: A novel hybrid multi-strategy rapidly-exploring random tree algorithm for multi-robot collaborative exploration in unknown environments,” Expert Syst. Appl. 247, 123238 (2024). Elsevier.10.1016/j.eswa.2024.123238CrossRefGoogle Scholar
Mete, A., Mouhoub, M. and Farid, A., “Coordinated Multi-Robot Exploration using Reinforcement Learning,” 2023 International Conference on Unmanned Aircraft Systems (ICUAS) (2023) pp. 265272.Google Scholar
Leong, K., “Reinforcement Learning with Frontier - Based Exploration via Autonomous Environment,” arXiv preprint arXiv:2307.07296 (2023).Google Scholar
Wang, R., Zhang, J., Lyu, M., “An improved frontier - based robot exploration strategy combined with deep reinforcement learning,” Rob. Auton. Syst. 181, 104783 (2024).10.1016/j.robot.2024.104783CrossRefGoogle Scholar
Khamis, A., Hussein, A. and Elmogy, A., “Multi-Robot Task Allocation: A Review of the State-of-the-Art,” In: Cooperative Robots and Sensor Networks 2015 (2015) pp. 3151. Springer.10.1007/978-3-319-18299-5_2CrossRefGoogle Scholar
Scheler, I. and Dietrich, R., “coExplore: Combining Multiple Rankings for Multi-robot Exploration,” arXiv preprint arXiv:2303.17459 (2023).Google Scholar
Gao, W., Booker, M., Adiwahono, A., Yuan, M., Wang, J. and Yun, Y., “An Improved Frontier-based Approach for Autonomous Exploration,” 15th International Conference on Control, Automation, Robotics and Vision (ICARCV) (IEEE, 2018) pp. 292297.10.1109/ICARCV.2018.8581245CrossRefGoogle Scholar
Sun, Y. and Zhang, C., “Efficient and safe robotic autonomous environment exploration using integrated frontier detection and multiple path evaluation,” Remote Sens-BASEL 13(23), article 4881 (2021).10.3390/rs13234881CrossRefGoogle Scholar
Fusic, S. J. and Sitharthan, R., “Improved RRT* algorithm-based path planning for unmanned aerial vehicle in a 3D metropolitan environment,” Unmanned Syst. 12(05), 859875 (2024).10.1142/S2301385024500225CrossRefGoogle Scholar
Fusic, J. and Sitharthan, R., “Self-adaptive learning particle swarm optimization-based path planning of mobile robot using 2D Lidar environment,” Robotica 42(4), 9771000 (2024).Google Scholar
Hichri, B., Gallala, A., Giovannini, F., “Mobile robots path planning and mobile multirobots control: A review,” Robotica 40(12), 42574270 (2022).10.1017/S0263574722000893CrossRefGoogle Scholar
Reda, M., Onsy, A., Haikal, A. Y., “Path planning algorithms in the autonomous driving system: A comprehensive review,” Rob. Auton. Syst. 174, 104630 (2024).10.1016/j.robot.2024.104630CrossRefGoogle Scholar
Sarkar, C., Paul, H. S. and Pal, A., “A Scalable Multi-robot Task Allocation Algorithm,” IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2018) pp. 50225027.10.1109/ICRA.2018.8460886CrossRefGoogle Scholar
Martin, J. G., Muros, F. J., Maestre, J. M. and Camacho, E. F., “Multi-robot task allocation clustering based on game theory,” Rob. Auton. Syst. 161, 104314 (2023). Elsevier.10.1016/j.robot.2022.104314CrossRefGoogle Scholar
Quinton, F., Grand, C. and Lesire, C., “Market approaches to the multi-robot task allocation problem: A survey,” J. Intell. Rob. Syst. 107(2), 29 (2023).10.1007/s10846-022-01803-0CrossRefGoogle Scholar
Chakraa, H., Guérin, F., Leclercq, E. and Lefebvre, D., “Optimization techniques for multi-robot task allocation problems: Review on the state-of-the-art,” Rob. Auton. Syst., 168,104492 (2023).10.1016/j.robot.2023.104492CrossRefGoogle Scholar
Seenu, N., K.C., R. M., Ramya, M. and Janardhanan, M. N., “Review on state-of-the-art dynamic task allocation strategies for multiple-robot systems,” Ind. Robot: Int. J. Rob. Res. Appl. 47(6), 929942 (2020).Google Scholar
Yu, T., Deng, B., Yao, W., Zhu, X. and Gui, J., “Market-based Robots Cooperative Exploration in Unknown Indoor Environment,” 2021 IEEE International Conference on Unmanned Systems (ICUS) (IEEE, 2021) pp. 414419.10.1109/ICUS52573.2021.9641421CrossRefGoogle Scholar
De Ryck, M., Pissoort, D., Holvoet, T. and Demeester, E., “Decentral task allocation for industrial agv-systems with routing constraints,” J. Manuf. Syst. 62, 135144 (2022).10.1016/j.jmsy.2021.11.012CrossRefGoogle Scholar
Kong, X., Gao, Y., Wang, T., Liu, J. and Xu, W., “Multi-robot Task Allocation Strategy Based on Particle Swarm Optimization and Greedy Algorithm,” 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) (IEEE, 2019) pp. 16431646.10.1109/ITAIC.2019.8785472CrossRefGoogle Scholar
Wei, C., Ji, Z. and Cai, B., “Particle swarm optimization for cooperative multi-robot task allocation: A multi-objective approach,” IEEE Rob. Autom. Lett. 5(2), 25302537 (2020).10.1109/LRA.2020.2972894CrossRefGoogle Scholar
Qin, X., Zong, Q., Li, X., Zhang, B. and Zhang, X., “Multi-robot task allocation based on improved ant colony algorithm,” Space Control Technol. Appl. 44(5), 5559 (2018).Google Scholar
Lindsay, N., Buehling, R. K. and Sun, L., “A sequential task addition distributed assignment algorithm for multi-robot systems,” J. Intell. Rob. Syst. 102(2), 51 (2021).10.1007/s10846-021-01394-2CrossRefGoogle Scholar
Miao, Z., Huang, W., Jiang, Q. and Fan, Q., “A novel multimodal multi-objective optimization algorithm for multi-robot task allocation,” Trans. Inst. Meas. Control (2023). doi: 10.1177/01423312231183588. SAGE Publications.CrossRefGoogle Scholar
Kang, N., Miao, Z., Pan, Q. K., “Multi-objective teaching-learning-based optimizer for a multi-weeding robot task assignment problem,” Tsinghua Sci. Technol. 29(5), 12491265 (2024).10.26599/TST.2023.9010075CrossRefGoogle Scholar
Kurdi, H. A., Aloboud, E., Alalwan, M., Alhassan, S., Alotaibi, E., Bautista, G. and How, J. P., “Autonomous task allocation for multi-uav systems based on the locust elastic behavior,” Appl. Soft. Comput. 71, 110126 (2018).10.1016/j.asoc.2018.06.006CrossRefGoogle Scholar
Aljalaud, F. and Kurdi, H. A., “Autonomous task allocation for multi-uav systems based on area-restricted search behavior in animals,” Procedia Comput. Sci. 191, 246253 (2021).10.1016/j.procs.2021.07.031CrossRefGoogle Scholar
dos Reis, W. P. N., Lopes, G. L. and Bastos, G. S., “An arrovian analysis on the multi-robot task allocation problem: Analyzing a behavior-based architecture,” Rob. Auton. Syst. 144(9), 103839 (2021).10.1016/j.robot.2021.103839CrossRefGoogle Scholar
Alitappeh, R. J. and Jeddisaravi, K., “Multi-robot exploration in task allocation problem,” Appl. Intell. 52(2), 21892211 (2022).10.1007/s10489-021-02483-3CrossRefGoogle Scholar
Park, B., Kang, C. and Choi, J., “Cooperative multi-robot task allocation with reinforcement learning,” Appl. Sci. 12(1), 272 (2021).10.3390/app12010272CrossRefGoogle Scholar
Xie, H., Yang, D., Xiao, L., “Connectivity-aware 3D UAV path design with deep reinforcement learning,” IEEE Trans. Veh. Technol. 70(12), 1302213034 (2021).10.1109/TVT.2021.3121747CrossRefGoogle Scholar
Zhang, J., Ren, J., Cui, Y., “Multi-USV task planning method based on improved deep reinforcement learning,” IEEE Internet Things J. 11(10), 1854918567 (2024).10.1109/JIOT.2024.3363044CrossRefGoogle Scholar
Jin, B., Sun, Y., Wu, W., “Deep reinforcement learning and ant colony optimization supporting multi-UGV path planning and task assignment in 3D environments,” IET Intell. Transp. Syst. 18(9), 16521664 (2024).10.1049/itr2.12535CrossRefGoogle Scholar
Sun, Y., Sun, R., Yu, S. and Peng, Y., “A Grid Map Fusion Algorithm Based On Maximum Common Subgraph,” 2018 13th World Congress On Intelligent Control and Automation (WCICA) (IEEE, 2018) pp. 5863.10.1109/WCICA.2018.8630401CrossRefGoogle Scholar
Lowe, D. G., “Object Recognition from Local Scale-Invariant Features,” Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2 (IEEE, 1999).10.1109/ICCV.1999.790410CrossRefGoogle Scholar
Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L., “Speeded-up robust features (SURF),” Comput. Vis. Image Understanding 110(3), 346359 (2008).10.1016/j.cviu.2007.09.014CrossRefGoogle Scholar
Rublee, E., Rabaud, V., Konolige, K. and Bradski, G., “ORB: An Efficient Alternative to SIFT or SURF,” 2011 International Conference on Computer Vision (IEEE, 2011) pp. 25642571.10.1109/ICCV.2011.6126544CrossRefGoogle Scholar
Qu, Z., Bu, W. and Liu, L., “The algorithm of seamless image mosaic based on A-KAZE features extraction and reducing the inclination of image,” IEEJ Trans. Electr. Electron. Eng. 13(1), 134146 (2018).10.1002/tee.22507CrossRefGoogle Scholar
Leutenegger, S., Chli, M. and Siegwart, R. Y., “BRISK: Binary Robust Invariant Scalable Keypoints,” 2011 International Conference on Computer Vision (IEEE, 2011).10.1109/ICCV.2011.6126542CrossRefGoogle Scholar
Alahi, A., Ortiz, R. and Vandergheynst, P., “Freak: Fast Retina Keypoint,” 2012 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012) pp. 510517.10.1109/CVPR.2012.6247715CrossRefGoogle Scholar
Chum, O. and Matas, J., “Optimal randomized RANSAC,” IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 14721482 (2008).10.1109/TPAMI.2007.70787CrossRefGoogle ScholarPubMed
Thrun, S., “A probabilistic on-line mapping algorithm for teams of mobile robots,” Int. J. Rob. Res. 20(5), 335363 (2001).10.1177/02783640122067435CrossRefGoogle Scholar
Howard, A., “Multi-robot simultaneous localization and mapping using particle filters,” Int. J. Rob. Res. 25(12), 12431256 (2006).10.1177/0278364906072250CrossRefGoogle Scholar
Lee, H., Roh, B. and Lee, B., “Multi-hypothesis map merging with sinogram-based PSO for multi-robot systems,” Electron. Lett. 52(14), 12131214 (2016).10.1049/el.2016.1041CrossRefGoogle Scholar
Jazi, S. H., “Map-merging using maximal empty rectangles in a multi-robot slam process,” J. Mech. Sci. Technol. 34(6), 25732583 (2020).10.1007/s12206-020-0532-6CrossRefGoogle Scholar
Chen, B., Li, S., Zhao, H. and Liu, L., “Map merging with suppositional box for multi-robot indoor mapping,” Electronics 10a(7), 815 (2021a).10.3390/electronics10070815CrossRefGoogle Scholar
Stathoulopoulos, N., Koval, A., Agha-mohammadi, A.-a. and Nikolakopoulos, G., “Frame: Fast and Robust Autonomous 3D Point Cloud Map-Merging for Egocentric Multi-robot Exploration,” 2023 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2023) pp. 34833489.10.1109/ICRA48891.2023.10160771CrossRefGoogle Scholar
Gui, L., Zeng, C., Luo, J., “Graph-based robust 3D point cloud map merging approach for large scale,” Cluster Comput. 28(1), 115 (2025).10.1007/s10586-024-04797-6CrossRefGoogle Scholar
Wei, H., Li, R., Cai, Y., Yuan, C., Ren, Y., Zou, Z., Wu, H., Zheng, C., Zhou, S., Xue, K. and Zhang, F., “Large-scale multi-session point-cloud map merging,” IEEE Rob. Autom. Lett. 10(1), 8895 (2025). doi: 10.1109/LRA.2024.3504317.CrossRefGoogle Scholar
Wijayathunga, L., Rassau, A. and Chai, D., “Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review,” Appl. Sci. 13(17), 9877 (2023).10.3390/app13179877CrossRefGoogle Scholar
Min, C., Si, S., Wang, X., “Autonomous Driving in Unstructured Environments: How Far Have We Come?,” arXiv preprint arXiv:2410.07701 (2024).Google Scholar
Liu, X., Wen, S., Liu, H. and Yu, F. R., “CPL-SLAM: Centralized collaborative multi-robot visual-inertial SLAM using point-and-line features,” IEEE Internet Things J., 1–1 (2025). doi: 10.1109/JIOT.2025.3548958.CrossRefGoogle Scholar
Bayer, J., Cížek, P. and Faigl, J., “Autonomous multi-robot exploration with ground vehicles in DARPA subterranean challenge finals,” Field Rob. 3, 266300 (2023). doi: 10.55417/fr.2023008.CrossRefGoogle Scholar
Park, K., Kim, S. and Sohn, K., “High-Precision Depth Estimation with the 3D Lidar and Stereo Fusion,” IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2018).10.1109/ICRA.2018.8461048CrossRefGoogle Scholar
Chen, Y., Chen, W., Zhu, L., “A study of sensor-fusion mechanism for mobile robot global localization,” Robotica 37(11), 18351849 (2019).10.1017/S0263574719000298CrossRefGoogle Scholar
Lu, G., “SLAM Based on Camera-2D LiDAR Fusion,” IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2024) pp. 1681816825.10.1109/ICRA57147.2024.10611546CrossRefGoogle Scholar
Best, G., Garg, R., Keller, J., “Multi-robot, multi-sensor exploration of multifarious environments with full mission aerial autonomy,” Int. J. Rob. Res. 43(4), 485512 (2024).10.1177/02783649231203342CrossRefGoogle Scholar
Yin, J., “M2DGR: A multi-sensor and multi-scenario slam dataset for ground robots,” IEEE Rob. Autom. Lett. 7(2), 22662273 (2021).10.1109/LRA.2021.3138527CrossRefGoogle Scholar
Wei, H., “Fusionportablev2: A unified multi-sensor dataset for generalized slam across diverse platforms and scalable environments,” Int. J. Rob. Res. (2024). doi: 10.1177/02783649241303525,CrossRefGoogle Scholar
Feng, D., “S3E: A multi-robot multimodal dataset for collaborative SLAM,” IEEE Rob. Autom. Lett. 9(12), 1140111408 (2024).10.1109/LRA.2024.3490402CrossRefGoogle Scholar
Kim, J., “DiTer++: Diverse Terrain and Multi-modal Dataset for Multi-Robot SLAM in Multi-session Environments,” arXiv preprint arXiv:2412.05839 (2024).Google Scholar
Yao, C., Ge, Y., Shi, G., “Tail: A terrain-aware multi-modal slam dataset for robot locomotion in deformable granular environments,” IEEE Rob. Autom. Lett. 9(7), 66966703 (2024).10.1109/LRA.2024.3407411CrossRefGoogle Scholar
Kenye, L. and Kala, R., “Improving RGB-D SLAM in dynamic environments using semantic aided segmentation,” Robotica 40(6), 20652090 (2022).10.1017/S0263574721001521CrossRefGoogle Scholar
Long, R., Rauch, C., Zhang, T., “Rigidfusion: Robot localisation and mapping in environments with large dynamic rigid objects,” IEEE Rob. Autom. Lett. 6(2), 37033710 (2021).10.1109/LRA.2021.3066375CrossRefGoogle Scholar
Long, R., Rauch, C., Ivan, V., “RGB-D-inertial SLAM in Indoor Dynamic Environments with Long-Term Large Occlusion,” arXiv preprint arXiv:2303.13316 (2023).Google Scholar
Wang, Y., Tian, Y., Chen, J., “A survey of visual SLAM in dynamic environment: The evolution from geometric to semantic approaches,” IEEE Trans. Instrum. Meas. 73, 121 (2024).Google Scholar
Wu, W., Guo, L., Gao, H., “YOLO-SLAM: A semantic SLAM system towards dynamic environment with geometric constraint,” Neural Comput. Appl., 34(8), 60116026 (2022).10.1007/s00521-021-06764-3CrossRefGoogle Scholar
Li, Y., Shen, H., Fu, Y., “A method of dense point cloud SLAM based on improved YOLOV8 and fused with ORB-SLAM3 to cope with dynamic environments,” Expert Syst. Appl. 255, 124918 (2024).10.1016/j.eswa.2024.124918CrossRefGoogle Scholar
Kong, D., Li, X., Xu, Q., “SC_LPR: Semantically consistent LiDAR place recognition based on chained cascade network in long-term dynamic environments,” IEEE Trans. Image Process. 33, 21452157 (2024).10.1109/TIP.2024.3364511CrossRefGoogle Scholar
Wang, X., Zheng, S., Lin, X., “Improving RGB-D SLAM accuracy in dynamic environments based on semantic and geometric constraints,” Measurement 217, 113084 (2023).10.1016/j.measurement.2023.113084CrossRefGoogle Scholar
Fan, Y., Zhang, Q., Tang, Y., “Blitz-SLAM: A semantic SLAM in dynamic environments,” Pattern Recogn. 121, 108225 (2022).10.1016/j.patcog.2021.108225CrossRefGoogle Scholar
Ji, T., Wang, C. and Xie, L., “Towards Real-Time Semantic RGB-D SLAM in Dynamic Environments,” IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2021) pp. 1117511181.10.1109/ICRA48506.2021.9561743CrossRefGoogle Scholar
Placed, J. A., Strader, J., Carrillo, H., Atanasov, N., Indelman, V., Carlone, L. and Castellanos, J. A., “A survey on active simultaneous localization and mapping: State of the art and new frontiers,” IEEE Trans. Rob. 39(3), 16861705 (2023).10.1109/TRO.2023.3248510CrossRefGoogle Scholar
Zhang, Y., Chen, L. and Xu, Q., “An Improved Frontier Point Exploration System for Mobile Robots Based on LiDAR SLAM,” IEEE International Conference on Development and Learning (ICDL) (IEEE, 2023) pp. 282287.10.1109/ICDL55364.2023.10364557CrossRefGoogle Scholar
Alcalde, M., Ferreira, M., González, P., “DA-SLAM: Deep Active SLAM Based on Deep Reinforcement Learning,” 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE) (IEEE, 2022) pp. 282287.10.1109/LARS/SBR/WRE56824.2022.9996006CrossRefGoogle Scholar
Singh, K. J., Kapoor, D. S., Thakur, K., “Map making in social indoor environment through robot navigation using active SLAM,” IEEE Access 10, 134455134465 (2022).10.1109/ACCESS.2022.3230989CrossRefGoogle Scholar
Pang, C., Zhou, L. and Huang, X., “A low-cost 3D SLAM system integration of autonomous exploration based on fast-ICP enhanced LiDAR-inertial odometry,” Remote Sens-BASEL 16(11), 1979 (2024).10.3390/rs16111979CrossRefGoogle Scholar
Chen, Q., Li, G., Xue, X. and Pu, J., “Multi-LIO: A Lightweight Multiple LiDAR-Inertial Odometry System,” 2024 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2024).10.1109/ICRA57147.2024.10611257CrossRefGoogle Scholar
Yin, L., “Decentralized Swarm Trajectory Generation for Lidar-based Aerial Tracking in Cluttered Environments,” 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2023).10.1109/IROS55552.2023.10341567CrossRefGoogle Scholar
Zhou, X., Zhu, J., Zhou, H., Xu, C. and Gao, F., “Ego-Swarm: A Fully Autonomous and Decentralized Quadrotor Swarm System in Cluttered Environments,” 2021 IEEE International Conference on Robotics and Automation (ICRA) (2021) pp. 41014107. doi: 10.1109/ICRA48506.2021.9561902.CrossRefGoogle Scholar
Park, J., Kim, D., Kim, G. C., Oh, D. and Kim, H. J., “Online distributed trajectory planning for quadrotor swarm with feasibility guarantee using linear safe corridor,” IEEE Rob. Autom. Lett. 7, 48694876 (2022).10.1109/LRA.2022.3152702CrossRefGoogle Scholar
Zhu, F., Ren, Y., Kong, F., Wu, H., Liang, S., Chen, N., Xu, W. and Zhang, F., “Swarm-LIO: Decentralized Swarm LiDAR-Inertial Odometry,” 2023 IEEE International Conference on Robotics and Automation (ICRA) (2023) pp. 32543260. doi: 10.1109/ICRA48891.2023.10161355.CrossRefGoogle Scholar
Zhu, F., Ren, Y., Yin, L., Kong, F., Liu, Q., Xue, R., Liu, W., Cai, Y., Lu, G., Li, H. and Zhang, F., “Swarm-LIO2: Decentralized efficient liDAR-inertial odometry for aerial swarm systems,” IEEE Trans. Rob. 41, 960981 (2025). doi: 10.1109/TRO.2024.3522155.CrossRefGoogle Scholar
Chung, T. H., Orekhov, V. and Maio, A., “Into the robotic depths: Analysis and insights from the darpa subterranean challenge,” Ann. Rev. Control Rob. Auton. Syst. 6(1), 477502 (2023).10.1146/annurev-control-062722-100728CrossRefGoogle Scholar
Rouček, T., Pecka, M., ČíŽek, P., “Darpa Subterranean Challenge: Multi-Robotic Exploration of Underground Environments,” Modelling and Simulation for Autonomous Systems: 6th International Conference, MESAS 2019, Palermo, Italy, October 29-31, 2019, Revised Selected Papers 6 (Springer International Publishing, 2019) pp. 274290.Google Scholar
Petrlik, M., Petracek, P., Kratky, V., “UAVs Beneath the Surface: Cooperative Autonomy for Subterranean Search and Rescue in DARPA SubT,” arXiv preprint, arXiv:2206.08185 (2022).Google Scholar
Koval, A., Kanellakis, C. and Nikolakopoulos, G., “Evaluation of lidar-based 3D SLAM algorithms in subT environment,” IFAC-PapersOnLine 55(38), 126131 (2022).10.1016/j.ifacol.2023.01.144CrossRefGoogle Scholar
Tranzatto, M., Miki, T., Dharmadhikari, M., “CERBERUS in the DARPA subterranean challenge,” Sci. Rob. 7(66), article eabp9742 (2022).10.1126/scirobotics.abp9742CrossRefGoogle ScholarPubMed
Agha, A., Otsu, K., Morrell, B., “NeBula: TEAM coSTAR’s robotic autonomy solution that won phase II of DARPA subterranean challenge,” Field Rob. 2, 14321506 (2022).10.55417/fr.2022047CrossRefGoogle Scholar
Ebadi, K., Bernreiter, L., Biggie, H., “Present and Future of SLAM in Extreme Underground Environments,” arXiv preprint, arXiv:2208.01787 (2022).Google Scholar
Zhang, J. and Singh, S., “LOAM: Lidar Odometry and Mapping in Real-Time,” Rob.: Sci. Syst. 2(9), 19 (2014).Google Scholar
Choudhury, S., Gupta, J. K., Kochenderfer, M. J., Sadigh, D. and Bohg, J., “Dynamic multi-robot task allocation under uncertainty and temporal constraints,” Auton. Rob. 46(1), 231247 (2022).10.1007/s10514-021-10022-9CrossRefGoogle Scholar
Hernández, C. A. V. and Ortiz, F. A. P., “A real-time map merging strategy for robust collaborative reconstruction of unknown environments,” Expert Syst. Appl. 145, 113109 (2020).10.1016/j.eswa.2019.113109CrossRefGoogle Scholar
Lin, Z., Zhu, J., Jiang, Z., Li, Y., Li, Y. and Li, Z., “Merging grid maps in diverse resolutions by the context-based descriptor,” ACM Trans. Internet Technol. (TOIT) 21(4), 121 (2021).Google Scholar
Zhang, L., Jiao, C., Huang, J. and Su, X., “AKAZE Feature-Based Map Merging for Multi-Robot SLAM with Unknown Initial Pose,” 2022 34th Chinese Control and Decision Conference (CCDC) (IEEE, 2022) pp. 56375642.10.1109/CCDC55256.2022.10033814CrossRefGoogle Scholar
McConnell, J., Huang, Y., Szenher, P., “DRACo-SLAM: Distributed Robust Acoustic Communication-Efficient SLAM for Imaging Sonar Equipped Underwater Robot Teams,” 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2022) pp. 84578464.10.1109/IROS47612.2022.9981822CrossRefGoogle Scholar
Rizk, Y., Awad, M. and Tunstel, E. W., “Cooperative heterogeneous multi-robot systems: A survey,” ACM Comput. Surv. (CSUR) 52(2), 131 (2019). ACM New York, NY, USA.10.1145/3303848CrossRefGoogle Scholar
Lee, H., “Tomographic feature-based map merging for multi-robot systems,” Electronics 9(1), 107 (2020).10.3390/electronics9010107CrossRefGoogle Scholar
Chen, W., Sun, J. and Zheng, Q., “Fast loop closure selection method with spatiotemporal consistency for multi-robot map fusion,” Appl. Sci. 12(11), 5291 (2022).10.3390/app12115291CrossRefGoogle Scholar
Dong, H., Yu, J., Xu, Y., Xu, Z., Shen, Z., Tang, J., Shen, Y. and Wang, Y., “Mr-gmmapping: Communication efficient multi-robot mapping system via gaussian mixture model,” IEEE Rob. Autom. Lett. 7(2), 32943301 (2022).10.1109/LRA.2022.3145059CrossRefGoogle Scholar
Ma, T., Jiang, G., Ou, Y., “Semantic geometric fusion multi-object tracking and lidar odometry in dynamic environment,” Robotica 42(3), 891910 (2024).10.1017/S0263574723001868CrossRefGoogle Scholar