Skip to main content
×
×
Home

Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey

  • Michael Hoy (a1), Alexey S. Matveev (a2) and Andrey V. Savkin (a1)
Summary

We review a range of techniques related to navigation of unmanned vehicles through unknown environments with obstacles, especially those that rigorously ensure collision avoidance (given certain assumptions about the system). This topic continues to be an active area of research, and we highlight some directions in which available approaches may be improved. The paper discusses models of the sensors and vehicle kinematics, assumptions about the environment, and performance criteria. Methods applicable to stationary obstacles, moving obstacles and multiple vehicles scenarios are all reviewed. In preference to global approaches based on full knowledge of the environment, particular attention is given to reactive methods based on local sensory data, with a special focus on recently proposed navigation laws based on model predictive and sliding mode control.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author. E-mail: mch.hoy@gmail.com
References
Hide All
1.Abe, Y. and Yoshiki, M., “Collision Avoidance Method for Multiple Autonomous Mobile Agents by Implicit Cooperation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3, Maui, HI, USA (2001) pp. 12071212.
2.Abichandani, P., Ford, G., Benson, H. Y. and Kam, M., “Mathematical Programming for Multi-Vehicle Motion Planning Problems,” Proceedings of the IEEE International Conference on Robotics and Automation, St Paul, MN, USA (2012) pp. 33153322.
3.Adinandra, S., Schreurs, E. and Nijmeijer, H., “A Practical Model Predictive Control for a Group of Unicycle Mobile Robots,” Proceedings of the 4th IFAC Conference on Nonlinear Model Predictive Control, Vol. 4, Leeuwenhorst, Netherlands (2012) pp. 472477.
4.Ahmadi-Pajouh, M. A., Towhidkhah, F., Gharibzadeh, S. and Mashhadimalek, M., “Path planning in the hippocampo-prefrontal cortex pathway: An adaptive model based receding horizon planner,” Med. Hypotheses 68 (6), 14111415 (2007).
5.Albagul, A. and Wahyudi, , “Dynamic Modeling and Adaptive Traction Control for Mobile Robots,” Proceedings of the 30th Annual Conference of IEEE Industrial Electronics Society, Vol. 1, Busan, Korea (2004) pp. 614620.
6.Alonso-Mora, J., Breitenmoser, A., Beardsley, P. and Siegwart, R., “Reciprocal Collision Avoidance for Multiple Car-Like Robots,” Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA (2012) pp. 360366.
7.Althoff, D., Kuffner, J., Wollherr, D. and Buss, M., “Safety assessment of robot trajectories for navigation in uncertain and dynamic environments,” Auton. Robot. 32 (3), 285302 (2012).
8.Alvarez, J. C., Shkel, A. and Lumelsky, V., “Accounting for Mobile Robot Dynamics in Sensor-Based Motion Planning: Experimental Results,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 3, Lueven, Belgium (1998) pp. 22052210.
9.Andersson, S. B., “Curve tracking for rapid imaging in AFM,” IEEE Trans. Nanobiosci. 6 (4), 354361 (2007).
10.Arkin, R. C., “Motor schema based mobile robot navigation,” Int. J. Robot. Res. 8 (4), 92112 (1989).
11.Arkin, R. C., “Behavior-based robot navigation for extended domains,” Adapt. Behav. 1 (2), 201225 (1992).
12.Armesto, L., Girbes, V., Vincze, M., Olufs, S. and Munoz-Benavent, P., “Mobile Robot Obstacle Avoidance Based on Quasi-Holonomic Smooth Paths,” In: Advances in Autonomous Robotics (Lecture Notes in Computer Science), Vol. 7429 (Herrmann, G.et al., eds.) (Springer, Berlin, Germany, 2012) pp. 244255.
13.Augugliaro, F., Schoellig, A. P. and D'Andrea, R., “Generation of Collision-Free Trajectories for a Quadrocopter Fleet: A Sequential Convex Programming Approach,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal (2012) pp. 19171922.
14.Balakrishna, R. and Ghosal, A., “Modeling of slip for wheeled mobile robots,” IEEE Trans. Robot. Autom. 11 (1), 126132 (1995).
15.Balkcom, D. J., Kavathekar, P. A. and Mason, M. T., “Time-optimal trajectories for an omni-directional vehicle,” Int. J. Robot. Res. 25 (10), 985999 (2006).
16.Barat, C. and Rendas, M. J., “Benthic Boundary Tracking Using a Profiler Sonar,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, Las Vegas, NV, USA (Oct. 2003) pp. 830835.
17.Baronov, D. and Baillieul, J., “Reactive Exploration Through Following Isolines in a Potential Field,” Proceedings of the American Control Conference, New York, NY, USA (Dec. 2007) pp. 21412146.
18.Bekris, K. E., Grady, D. K., Moll, M. and Kavraki, L. E., “Safe distributed motion coordination for second-order systems with different planning cycles,” Int. J. Robot. Res. 31 (2), 129150 (2012).
19.Bekris, K. E., Tsianos, K. I. and Kavraki, L. E., “Safe and distributed kinodynamic replanning for vehicular networks,” Mobile Netw. Appl. 14 (3), 292308 (2009).
20.Belkhouche, F., “Reactive path planning in a dynamic environment,” IEEE Trans. Robot. 25 (4), 902911 (2009).
21.Belkhous, S., Azzouz, A., Saad, M., Nerguizian, V. and Nerguizian, C., “A novel approach for mobile robot navigation with dynamic obstacles avoidance,” J. Intell. Robot. Syst. 44 (3), 187201 (2005).
22.Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E. and Pappas, G. J., “Symbolic planning and control of robot motion [grand challenges of robotics],” IEEE Robot. Autom. Mag. 14 (1), 6170 (2007).
23.Bemporad, A. and Barcelli, D., “Decentralized model predictive control,” In: Lecture Notes in Control and Information Sciences, Vol. 406 (Bemporad, A., Heemels, M. and Johansson, M., eds.) (Springer, London, 2010) pp. 149178.
24.Bemporad, A., Marco, M. D. and Tesi, A., “Sonar-based wall-following control of mobile robots,” ASME J. Dyn. Syst. Meas. Control 122 (1), 226230 (2000).
25.Bereg, S. and Kirkpatrick, D., “Curvature–bounded Traversals of Narrow Corridors,” Proceedings of the 21st Annual Symposium on Computational Geometry, Pisa, Italy (2005) pp. 278287.
26.Kemp, M., Bertozzi, A. L. and Marthaler, D., “Multi–UUV Perimeter Surveillance,” Proceedings of the IEEE/OES Autonomous Underwater Vehicles Conference, Sebasco, ME, USA (Jun. 2004) pp. 102107.
27.Besada-Portas, E., de la Torre, L., de la Cruz, J. M. and de Andres-Toro, B., “Evolutionary trajectory planner for multiple UAVs in realistic scenarios,” IEEE Trans. Robot. 26 (4), 619634 (2010).
28.Bevan, G., Gollee, H. and O'reilly, J., “Automatic lateral emergency collision avoidance for a passenger car,” Int. J. Control 80 (11), 17511762 (2007).
29.Bicchi, A., Casalino, G. and Santilli, C., “Planning shortest bounded-curvature paths for a class of nonholonomic vehicles among obstacles,” J. Intell. Robot. Syst. 16 (4), 387405 (1996).
30.Blackmore, L., Ono, M. and Williams, B. C., “Chance-constrained optimal path planning with obstacles,” IEEE Trans. Robot. 27 (6), 10801094 (2011).
31.Blanco, J.-L., Gonzalez, J. and Fernandez-Madrigal, J.-A., “Extending obstacle avoidance methods through multiple parameter-space transformations,” Auton. Robots 24 (1), 2948 (2008).
32.Bode, N. W., Wood, A. J. and Franks, D. W., “Social networks and models for collective motion in animals,” Behav. Ecol. Sociobiol. 65 (2), 117130 (2011).
33.Bonin-Font, F., Ortiz, A. and Oliver, G., “Visual navigation for mobile robots: A survey,” J. Intell. Robot. Syst. 53 (3), 263296 (2008).
34.Boquete, V., Garcia, R., Barea, R. and Mazo, M., “Neural control of the movements of a wheelchair,” J. Intell. Robot. Syst. 25 (3), 213226 (1999).
35.Bouraine, S., Fraichard, T. and Salhi, H., “Provably safe navigation for mobile robots with limited field-of-views in dynamic environments,” Auton. Robots 32 (3), 267283 (2012).
36.Brooks, A., Kaupp, T. and Makarenko, A., “Randomised MPC-based Motion-Planning for Mobile Robot Obstacle Avoidance,” Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan (2009) pp. 397402.
37.Burian, E., Yoeger, D., Bradley, A. and Singh, H., “Gradient Search with Autonomous Underwater Vehicle using Scalar Measurements,” Proceedings of the IEEE Symposium on Underwater Vehicle Technology, Monterey, CA (Jun. 1996) pp. 8698.
38.Caccia, M., Bono, R. and Bruzzone, G., “Variable-configuration UUVs for marine science applications,” IEEE Robot. Autom. Mag. 6 (2), 2232 (1999).
39.Camhi, J. M. and Johnson, E. N., “High–frequency steering maneuvers mediated by tactile cues: Antennal wall-following in the cockroach,” J. Exp. Biol. 202 (5), 631643 (1999).
40.Canny, J., The Complexity of Robot Motion Planning (MIT Press, Cambridge, MA, 1988).
41.Carelli, R. and Freire, E. O., “Corridor navigation and wall-following stable control for sonar-based mobile robots,” Robot. Auton. Syst. 45 (12), 235247 (2003).
42.Casbeer, D. W., Kingston, D. B., Beard, R. W., McLain, T. W., Li, S. M. and Mehra, R., “Cooperative forest fire surveillance using a team of small unmanned air vehicles,” Int. J. Syst. Sci. 36 (6), 351360 (2006).
43.Casbeer, D. W., Li, S. M., Beard, R. W., McLain, T. W. and Mehra, R. K., “Forest Fire Monitoring Using Multiple Small UAVs,” Proceedings of the 2005 American Control Conference, Vol. 5, Minneapolis, MA, USA (2005) pp. 35303535.
44.Chakravarthy, A. and Ghose, D., “Obstacle avoidance in a dynamic environment: A collision cone approach,” IEEE Trans. Syst. Man Cybern. 28 (5), 562574 (1998).
45.Chang, D. E., Shadden, S. C., Marsden, J. E. and Olfati-Saber, R., “Collision Avoidance for Multiple Agent Systems,” Proceedings of the 42nd IEEE Conference on Decision and Control, Vol. 1, Maui, HI, USA (2003) pp. 539543.
46.Cheng, T. M. and Savkin, A. V., “Decentralized control for mobile robotic sensor network self-deployment: Barrier and sweep coverage problems,” Robotica 29 (2), 283294 (2011).
47.Cheng, T. M. and Savkin, A. V., “Self-deployment of mobile robotic sensor networks for multilevel barrier coverage,” Robotica 30 (4), 661669 (2012).
48.Cheng, T. M., Savkin, A. V. and Javed, F., “Decentralized control of a group of mobile robots for deployment in sweep coverage,” Robot. Auton. Syst. 59 (7–8), 497507 (2011).
49.Chitsaz, H., LaValle, S. M., Balkcom, D. J. and Mason, M. T., “Minimum wheel-rotation paths for differential-drive mobile robots,” Int. J. Robot. Res. 28 (1), 6680 (2009).
50.Chung, W., Kim, S., Choi, M., Choi, J., Kim, H., Moon, C-B. and Song, J-B., “Safe navigation of a mobile robot considering visibility of environment,” IEEE Trans. Ind. Electron. 56 (10), 39413950 (2009).
51.Chunyu, J., Qu, Zh., Pollak, E. and Falash, M., “Reactive Target-tracking Control with Obstacle Avoidance of Unicycle-type Mobile Robots in a Dynamic Environment,” American Control Conference, Baltimore, MD (Jun. 2010) pp. 11901195.
52.Cifuentes, S., Giron-Sierra, J. M. and Jimenez, J., “Robot navigation based on discrimination of artificial fields: Application to single robots,” Adv. Robot. 26 (5–6), 605626 (2012).
53.Cochran, J. and Krstic, M., “Nonholonomic source seeking with tuning of angular velocity,” IEEE Trans. Autom. Control 54 (4), 717731 (2009).
54.Consolini, L. and Tosques, M., “A path following problem for a class of non-holonomic control systems with noise,” Automatica 41 (6), 10091016 (2005).
55.Cowlagi, R. V. and Tsiotras, P., “Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic vehicles,” IEEE Trans. Robot. 28 (2), 379395 (2012).
56.Cui, R., Gao, B. and Guo, J., “Pareto-optimal coordination of multiple robots with safety guarantees,” Auton. Robots 32 (3), 189205 (2012).
57.Dadkhah, N. and Mettler, B., “Survey of motion planning literature in the presence of uncertainty: Considerations for UAV guidance,” J. Intell. Robot. Syst. 65 (1), 233246 (2012).
58.De Schutter, J., De Laet, T., Rutgeerts, J., Decra, W., Smits, R., Aertbelian, E., Claes, K. and Bruyninckx, H., “Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty,” Int. J. Robot. Res. 26 (5), 433455 (2007).
59.Defoort, M., Kokosy, A., Floquet, T., Perruquetti, W. and Palos, J., “Motion planning for cooperative unicycle-type mobile robots with limited sensing ranges: A distributed receding horizon approach,” Robot. Auton. Syst. 57 (11), 10941106 (2009).
60.Defoort, M., Palos, J., Kokosy, A., Floquet, T. and Perruquetti, W., “Performance-based reactive navigation for non-holonomic mobile robots,” Robotica 27 (2), 281290 (2009).
61.Deng, M., Inoue, A., Shibata, Y., Sekiguchi, K. and Ueki, N., “An Obstacle Avoidance Method for Two Wheeled Mobile Robot,” Proceedings of the 2007 IEEE International Conference on Networking, Sensing and Control (2007), pp. 689–692.
62.Desaraju, V. and How, J., “Decentralized path planning for multi-agent teams with complex constraints,” Auton. Robots 32 (4), 385403 (2012).
63.DeSouza, G. N. and Kak, A. C., “Vision for mobile robot navigation: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 2 (24), 237267 (2002).
64.Diankov, R. and Kuffner, J., “Randomized Statistical Path Planning,” Proceedings of the 2007 IEEE/RSJ International Conference on Robots and Systems, San Diego, CA, USA (2007) pp. 16.
65.Dimarogonas, D. V. and Kyriakopoulos, K. J., “Decentralized navigation functions for multiple robotic agents with limited sensing capabilities,” J. Intell. Robot. Syst. 48 (3), 411433 (2007).
66.Dimarogonas, D. V. and Kyriakopoulos, K. J., “Connectedness preserving distributed swarm aggregation for multiple kinematic robots,” IEEE Trans. Robot. 24 (5), 12131223 (2008).
67.Dimarogonas, D. V., Loizou, S. G., Kyriakopoulos, K. J. and Zavlanos, M. M., “A feedback stabilization and collision avoidance scheme for multiple independent non-point agents,” Automatica 42 (2), 229243 (2006).
68.Douillard, B., Fox, D., Ramos, F. and Durrant-Whyte, H., “Classification and semantic mapping of urban environments,” Int. J. Robot. Res. 30 (1), 532 (2011).
69.Du Toit, N. E. and Burdick, J. W., “Robot motion planning in dynamic, uncertain environments,” IEEE Trans. Robot. 28 (1), 101115 (2012).
70.Dubins, L. E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents,” Am. J. Math. 79 (3), 497516 (1957).
71.Durrant-Whyte, H. and Bailey, T., “Simultaneous localization and mapping: Part I,” IEEE Robot. Autom. Mag. 13 (2), 99110 (2006).
72.Ekanayake, S. W. and Pathirana, P. N., “Formations of robotic swarm: An artificial force based approach,” Int. J. Adv. Robot. Syst. 6 (1), 724 (2009).
73.Fahimi, F., Nataraj, C. and Ashrafiuon, H., “Real-time obstacle avoidance for multiple mobile robots,” Robotica 27 (2), 189198 (2009).
74.Farrokhsiar, M. and Najjaran, H., “An Unscented Model Predictive Control Approach to the Formation Control of Nonholonomic Mobile Robots,” Proceedings of the IEEE International Conference on Robotics and Automation, St Paul, MN, USA (2012) pp. 15761582.
75.Fazli, S. and Kleeman, L., “Wall following and Obstacle Avoidance Results from A Multi-DSP Sonar Ring on a Mobile Robot,” IEEE International Conference Mechatronics and Automation, Vol. 1, Niagara Falls, Canada (Jul. 2005) pp. 432437.
76.Fernandez, J. L., Sanz, R., Benayas, J. A. and Diaguez, A. R., “Improving collision avoidance for mobile robots in partially known environments: The beam curvature method,” Robot. Auton. Syst. 46 (4), 205219 (2004).
77.Ferrara, A. and Rubagotti, M., “Sliding Mode Control of a Mobile Robot for Dynamic Obstacle Avoidance Based on a Time-varying Harmonic Potential Field,” ICRA 2007 Workshop: Planning, Perception and Navigation for Intelligent Vehicles, Rome, Italy (Apr. 2007).
78.Fiorini, P. and Shiller, Z., “Time Optimal Trajectory Planning in Dynamic Environments,” Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA (1996) pp. 15531558.
79.Fiorini, P. and Shiller, Z., “Motion planning in dynamic environments using velocity obstacles,” Int. J. Robot. Res. 17 (7), 760772 (1998).
80.Flierl, G., Grunbaum, D., Levin, S. and Olson, D., “From individuals to aggregations: The interplay between behavior and physics,” J. Theor. Biol. 196 (4), 397454 (1999).
81.Foka, A. and Trahanias, P., “Probabilistic autonomous robot navigation in dynamic environments with human motion prediction,” Int. J. Soc. Robot. 2 (1), 7994 (2010).
82.Fossen, T., Guidance and Control of Ocean Vehicles (Wiley, NY, 1994).
83.Fox, D., Burgard, W. and Thrun, S., “The dynamic window approach to collision avoidance,” IEEE Robot. Autom. Mag. 4 (1), 2333 (1997).
84.Fraichard, T., “Trajectory planning in a dynamic workspace: A state–time space approach,” Adv. Robot. 13 (1), 7594 (1999).
85.Fraichard, T. and Asama, H., “Inevitable Collision States. A Step Towards Safer Robots?IEEE International Conference on Intelligent Robots and Systems, Vol. 1, Las Vegas, NV, USA (2003) pp. 388393.
86.Fujimori, A., Teramoto, M., Nikiforuk, P. N. and Gupta, M. M., “Cooperative collision avoidance between multiple mobile robots,” J. Robot. Syst. 17 (7), 347363 (2000).
87.Gabriely, Y. and Rimon, E., “CBUG: A quadratically competitive mobile robot navigation algorithm,” IEEE Trans. Robot. 24 (6), 14511457 (2008).
88.Galicki, M., “Collision-free control of an omni-directional vehicle,” Robot. Auton. Syst. 57 (9), 889900 (2009).
89.Garrido, S., Moreno, L., Blanco, D. and Jurewicz, P., “Path planning for mobile robot navigation using voronoi diagram and fast marching,” Int. J. Robot. Autom. 2 (1), 4264 (2011).
90.Ge, S. S. and Cui, Y. J., “New potential functions for mobile robot path planning,” IEEE Trans. Robot. Autom. 16 (5), 615620 (2000).
91.Ge, S. S. and Cui, Y. J., “Dynamic motion planning for mobile robots using potential field method,” Auton. Robots 13 (3), 207222 (2002).
92.Ge, S. S., Lai, X. and Mamun, A. A., “Boundary following and globally convergent path planning using instant goals,” IEEE Trans. Syst. Man Cybern. 35 (2), 240254 (2005).
93.Ge, S. S., Lai, X. and Mamun, A. A., “Sensor-based path planning for nonholonomic mobile robots subject to dynamic constraints,” Robot. Auton. Syst. 55 (7), 513526 (2007).
94.Gecks, T. and Henrich, D., “Sensor-based Online Planning of Time-optimized Paths in Dynamic Environments,” In: Advances in Robotics Research (Krager, T. and Wahl, F. M., eds.) (Springer, Berlin–Heidelberg, 2009) pp. 5363.
95.Ghrist, R. W. and Koditschek, D. E., “Safe cooperative robot dynamics on graphs,” SIAM J. Control Optim. 40 (5), 15561575 (2002).
96.Girard, A., Howell, A. S. and Hedrick, J. K., “Border Patrol and Surveillance Missions using Multiple Unmanned Air Vehicles,” Proceedings of the 43th IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004) pp. 620625.
97.Goerzen, C., Kong, Z. and Mettler, B., “A survey of motion planning algorithms from the perspective of autonomous UAV guidance,” J. Intell. Robot. Syst. 57 (1–4), 65100 (2009).
98.Gomez, M., Gonzalez, R. V., Martinez-Marin, T., Meziat, D. and Sanchez, S., “Optimal motion planning by reinforcement learning in autonomous mobile vehicles,” Robotica 30 (2), 159170 (2012).
99.Gonzalez, R., Fiacchini, M., Guzman, J. L., Alamo, T. and Rodriguez, F., “Robust tube-based predictive control for mobile robots in off-road conditions,” Robot. Auton. Syst. 59 (10), 711726 (2011).
100.Gracia, L. and Tornero, J., “Kinematic modeling and singularity of wheeled mobile robots,” Adv. Robot. 21 (7), 793816 (2007).
101.Gracia, L. and Tornero, J., “Kinematic modeling of wheeled mobile robots with slip,” Adv. Robot. 21 (11), 12531279 (2007).
102.Grancharova, A., Gratli, E. I. and Johansen, T. A., “Distributed MPC-based Path Planning for UAVs Under Radio Communication Path Loss Constraints,” Proceedings of the IFAC Conference on Embedded Systems, Computational Intelligence and Telematics in Control, Wurzburg, Germany (2012) pp. 254259.
103.Gratli, E. and Johansen, T., “Path planning for UAVs under communication constraints using SPLAT! and MILP,” J. Intell. Robot. Syst. 65 (1), 265282 (2012).
104.Green, W. E. and Oh, P. Y., “Optic-flow-based collision avoidance,” IEEE Robot. Autom. Mag. 15 (1), 96103 (2008).
105.Hernandez-Martinez, E. G. and Aranda-Bricaire, E., “Convergence and Collision Avoidance in Formation Control: A Survey of the Artificial Potential Functions Approach,” In: Multi-Agent Systems-Modeling, Control, Programming, Simulations and Applications. InTech (Alkhateeb, F., Al Maghayreh, E. and Abu Doush, I., eds) (2011).
106.Hoffmann, G. M. and Tomlin, C. J., “Decentralized Cooperative Collision Avoidance for Acceleration Constrained Vehicles,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico (2008) pp. 43574363.
107.Horn, S. and Janschek, K., “A Set-based Global Dynamic Window Algorithm for Robust and Safe Mobile Robot Path Planning,” Proceedings of the 41st International Symposium on Robotics and the 6th German Conference on Robotics Munich, Germany (2010) pp. 17.
108.Hoy, M., “Deadlock Resolution for Navigation of Wheeled Robots in Continuous State-space,” Proceedings of the International Conference on Automation, Robotics, Control and Vision, Guangzhou, China (2012) pp. 130135.
109.Hoy, M., Matveev, A. S., Garratt, M. and Savkin, A. V., “Collision free navigation of an autonomous unmanned helicopter in unknown urban environments: Sliding mode and MPC approaches,” Robotica 30 (4), 537550 (2012).
110.Hoy, M., Matveev, A. S. and Savkin, A. V., “Collision free cooperative navigation of multiple wheeled robots in unknown cluttered environments,” Robot. Auton. Syst. 60 (10), 12531266 (2012).
111.Hoy, M. and Savkin, A. V., “A method of boundary following by a wheeled mobile robot based on sampled range information,” J. Intell. Robot. Syst. 72 (3–4), 463482 (2013).
112.Huang, L., “Wall-following control of an infrared sensors guided wheeled mobile robot,” Int. J. Intell. Syst. Technol. Appl. 7 (1), 106117 (2009).
113.Huang, W. H., Fajen, B. R., Fink, J. R. and Warren, W. H., “Visual navigation and obstacle avoidance using a steering potential function,” Robot. Auton. Syst. 54 (4), 288299 (2006).
114.Innocenti, M., Pollini, L. and Turra, D., “A fuzzy approach to the guidance of unmanned air vehicles tracking moving targets,” IEEE Trans. Control Syst. Technol., 16 (6), 11251137 (2008).
115.Jefferies, M. E. and Yeap, W., eds., Robotics and Cognitive Approaches to Spatial Mapping, Vol. 38 (Springer, Berlin Heidelberg, 2008).
116.Joshi, A., Ashley, T., Huang, Y. R. and Bertozzi, A. L., “Experimental Validation of Cooperative Environmental Boundary Tracking with On-board Sensors,” Proceedings of the American Control Conference, St Louis, MO, USA (Jun. 2009) pp. 26302635.
117.Kallem, V., Komoroski, A. T. and Kumar, V., “Sequential composition for navigating a nonholonomic cart in the presence of obstacles,” IEEE Trans. Robot. 27 (6), 11521159 (2011).
118.Kamon, I., Rimon, E. and Rivlin, E., “A range-sensor based navigation algorithm,” Int. J. Robot. Res. 17 (9), 934953 (1991).
119.Kamon, I., Rimon, E. and Rivlin, E., “Tangentbug: A range-sensor-based navigation algorithm,” Int. J. Robot. Res. 17 (9), 934953 (1998).
120.Kamon, I. and Rivlin, E., “Sensory-based motion planning with global proofs,” IEEE Trans. Robot. Autom. 13 (6), 814822 (1997).
121.Karaman, S. and Frazzoli, E., “Sampling–based algorithms for optimal motion planning,” Int. J. Robot. Res. 30 (7), 846894 (2011).
122.Bertozzi, A. L., Kemp, M. and Marthaler, D., “Determining Environmental Boundaries: Asynchronous Communication and Physical Scales,” In: Cooperative Control (Kumar, V., Leonard, N. E. and Morse, A. S., eds.) (Springer Verlag, Berlin, 2004) pp. 2542.
123.Kendoul, F., “Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems,” J. Field Robot. 29 (2), 315378 (2012).
124.Kim, D. H. and Shin, S., “New repulsive potential functions with angle distributions for local path planning,” Adv. Robot. 20 (1), 2548 (2006).
125.Kim, J., Zhang, F. and Egerstedt, M., “Curve tracking control for autonomous vehicles with rigidly mounted range sensors,” J. Intell. Robot. Syst. 56 (2), 177197 (2009).
126.Kim, S., Russel, J. and Koo, K., “Construction robot path-planning for earthwork operations,” J. Comput. Civ. Eng. 17 (2), 97104 (2003).
127.Ko, N. Y. and Simmons, R. G., “The Lane-curvature Method for Local Obstacle Avoidance,” Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3, Victoria, Canada (1998) pp. 16151621.
128.Koenig, S. and Likhachev, M., “Fast replanning for navigation in unknown terrain,” IEEE Trans. Robot. 21 (3), 354363 (2005).
129.Kozlowski, K., Robot Motion and Control (Springer, London, 2009).
130.Krishnamurthy, P. and Khorrami, F., “GODZILA: A low–resource algorithm for path planning in unknown environments,” J. Intell. Robot. Syst. 48 (3), 357373 (2007).
131.Krontiris, A. and Bekris, K. E., “Using Minimal Communication to Improve Decentralized Conflict Resolution for Non-holonomic Vehicles,” Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA (2011) pp. 32353240.
132.Kuchar, J. K. and Yang, L. C., “A review of conflict detection and resolution modeling methods,” IEEE Trans. Intell. Trans. Syst. 1 (4), 179189 (2000).
133.Kulić, R. and Vukić, Z., “Methodology of concept control synthesis to avoid unmoving and moving obstacles,” J. Intell. Robot. Syst. 45 (1), 267294 (2006).
134.Kurniawati, H., Du, Y., Hsu, D. and Lee, W. S., “Motion planning under uncertainty for robotic tasks with long time horizons,” Int. J. Robot. Res. 30 (3), 308323 (2011).
135.Kuwata, Y. and How, J. P., “Cooperative distributed robust trajectory optimization using receding horizon MILP,” IEEE Trans. Control Syst. Technol. 19 (2), 423431 (2011).
136.Kuwata, Y., Richards, A., Schouwenaars, T. and How, J. P., “Distributed robust receding horizon control for multivehicle guidance,” IEEE Trans. Control Syst. Technol. 15 (4), 627641 (2007).
137.Lalish, E. and Morgansen, K., “Distributed reactive collision avoidance,” Auton. Robots 32 (3), 207226 (2012).
138.Lalish, E., Morgansen, K. A. and Tsukamaki, T., “Decentralized Reactive Collision Avoidance for Multiple Unicycle-type Vehicles,” Proceedings of the American Control Conference, Seattle, WA, USA (2008) pp. 50555061.
139.Langer, R., Coelho, L. and Oliveira, G., “K-bug, A New Bug Approach for Mobile Robot's Path Planning,” Proceedings of the IEEE International Conference on Control Applications, Singapore (Oct. 2007) pp. 403408.
140.Langson, W., Chryssochoos, I., Rakovic, S. V. and Mayne, D. Q., “Robust model predictive control using tubes,” Automatica 40 (1), 125133 (2004).
141.Lapierre, L. and Jouvencel, B., “Robust nonlinear path-following control of an AUV,” IEEE J. Ocean. Eng. 33 (2), 89102 (2008).
142.Lapierre, L. and Zapata, R., “A guaranteed obstacle avoidance guidance system,” Auton. Robots 32 (3), 177187 (2012).
143.Lapierre, L., Zapata, R. and Lepinay, P., “Combined path-following and obstacle avoidance control of a wheeled robot,” Int. J. Robot. Res. 26 (4), 361375 (2007).
144.Large, F., Lauger, C. and Shiller, Z., “Navigation among moving obstacles using the NLVO: Principles and applications to intelligent vehicles,” Auton. Robots 19 (2), 159171 (2005).
145.Latombe, J. C., Robot Motion Planning (Kluwer Academic Publishers, London, 1991).
146.Lau, B., Sprunk, C. and Burgard, W., “Kinodynamic Motion Planning for Mobile Robots Using Splines,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St Louis, MO, USA (2009) pp. 24272433.
147.Laubach, S. L. and Burdick, J. W., “An Autonomous Sensor-Based Path-Planner for Planetary Microrovers,” Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA (May 1999) pp. 347354.
148.Lee, D. N., “Guiding movements by coupling taus,” Ecol. Psychol. 10 (3–4), 221250 (1998).
149.Lee, H., Utkin, V. I. and Malinin, A., “Chattering reduction using multiphase sliding mode control,” Int. J. Control 82 (9), 17201737 (2009).
150.Lee, K. B. and Han, M. H., “Lane-following method for high speed autonomous vehicles,” Int. J. Automot. Technol. 9 (5), 607613 (2008).
151.Li, W. and Cassandras, C. G., “A cooperative receding horizon controller for multivehicle uncertain environments,” IEEE Trans. Autom. Control 51 (2), 242257 (2006).
152.Lindemann, S. R., Hussein, I. I. and LaValle, S. M., “Real Time Feedback Control for Nonholonomic Mobile Robots with Obstacles,” Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA (Dec. 2006) pp. 24062411.
153.Liu, Y-H. and Arimoto, S., “Path planning using a tangent graph for mobile robots among polygonal and curved obstacles,” Int. J. Robot. Res. 11 (4), 376382 (1992).
154.Hsieh, M. A., Loizou, S. and Kumar, V., “Stabilization of Multiple Robots on Stable Orbits via Local Sensing,” Proceedings of the IEEE Conference on Robotics and Automation, Rome, Italy (Apr. 2007) pp. 23122317.
155.Loizou, S. G. and Kyriakopoulos, K. J., “Navigation of multiple kinematically constrained robots,” IEEE Trans. Robot. 24 (1), 221231 (2008).
156.Lopez, A. S., Zapata, R. and Osorio-Lama, M. A., “Sampling-based motion planning: A survey,” Comput. Sistem. 12 (1), 524 (2008).
157.Low, E. M., Manchester, I. R. and Savkin, A. V., “A biologically inspired method for vision-based docking of wheeled mobile robots,” Robot. Auton. Syst. 55 (10), 769784 (2007).
158.Lumelsky, V. and Stepanov, A. A., “Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape,” Algorithmica 2 (1), 403430 (1987).
159.Lumelsky, V. and Tiwari, S., “An Algorithm for Maze Searching with Azimuth Input,” Proceedings of the IEEE Conference on Robotics and Automation, San Diego, CA, USA (May 1991) pp. 111116.
160.Lumelsky, V. J. and Skewis, T., “Incorporating range sensing in the robot navigation function,” IEEE Trans. Syst. Man Cybern. 20 (5), 10581069 (1990).
161.Lumelsky, V. J. and Stepanov, A. A., “Dynamic path planning for a mobile automaton with limited information on the environment,” IEEE Trans. Autom. Control 31 (11), 10581063 (1986).
162.Maes, P. and Brooks, R. A., “Learning to Coordinate Behaviors,” Proceedings of the AAAI, Boston, MA (1990) pp. 796802.
163.Magid, E. and Rivlin, E., “Cautiousbug: A Competitive Algorithm for Sensor-based Robot Navigation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan (Sep. 2004) pp. 27572762.
164.Magni, L., Raimondo, D. and Allgower, F., Nonlinear Model Predictive Control: Towards New Challenging Applications (Springer-Verlag, Berlin, Germany, 2009).
165.Malisoff, M., Mazenc, F. and Zhang, F., “Input-to-state Stability for Curve Tracking Control: A Constructive Approach,” Proceedings of the American Control Conference, San Francisco, CA (USA, 2011) pp. 19841989.
166.Manchester, I. R. and Savkin, A. V., “Circular navigation missile guidance with incomplete information and uncertain autopilot model,” J. Guid. Control Dyn. 27 (6), 10761083 (2004).
167.Manchester, I. R. and Savkin, A. V., “Circular navigation guidance law for precision missile/target engagement,” J. Guid. Control Dyn. 29 (2), 12871292 (2006).
168.Manor, G. and Rimon, E., “High-speed Navigation of a Uniformly Braking Mobile Robot Using Position–Velocity Configuration Space,” Proceedings of the IEEE International Conference on Robotics and Automation, St Paul, MN, USA (2012) pp. 193199.
169.Marthaler, D. and Bertozzi, A. L., “Tracking Environmental Level Sets with Autonomous Vehicles,” In: Recent Developments in Cooperative Control and Optimization (Butenko, S., Murphey, R. and Pardalos, P. M., eds.), Vol. 3 (Kluwer, Boston, MA, 2003).
170.Masehian, E. and Katebi, Y., “Robot motion planning in dynamic environments with moving obstacles and target,” Int. J. Mech. Syst. Sci. Eng. 1 (1), 2025 (2007).
171.Masoud, A., “Kinodynamic motion planning,” IEEE Robot. Autom. Mag. 17 (1), 8599 (2010).
172.Masoud, A., “A harmonic potential approach for simultaneous planning and control of a generic UAV platform,” J. Intell. Robot. Syst. 65 (1), 153173 (2012).
173.Mastellone, S., Stipanovic, D. M., Graunke, C. R., Intlekofer, K. A. and Spong, M. W., “Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments,” Int. J. Robot. Res. 27 (1), 107126 (2008).
174.Mastrogiovanni, F., Sgorbissa, A. and Zaccaria, R., “Robust navigation in an unknown environment with minimal sensing and representation,” IEEE Trans. Syst. Man Cybern. 39 (1), 212229 (2009).
175.Mataric, M. J., “Behavior-based Control: Main Properties and Implications,” Proceedings of the IEEE International Conference on Robotics and Automation Nice, France (1992) pp. 4654.
176.Matveev, A. S., Hoy, M., Katupitiya, J. and Savkin, A. V., “Nonlinear sliding mode control of an unmanned agricultural tractor in the presence of sliding and control saturation,” Robot. Auton. Syst. 61 (9), 973987 (2013).
177.Matveev, A. S., Hoy, M. and Savkin, A. V., “The problem of boundary following by a unicycle-like robot with rigidly mounted sensors,” Robot. Auton. Syst. 61 (3), 312327 (2013).
178.Matveev, A. S., Hoy, M. C. and Savkin, A. V., “A method for reactive navigation of nonholonomic robots in maze-like environments,” Automatica 49 (5), 12681274 (2013).
179.Matveev, A. S. and Savkin, A. V., “The problem of state estimation via asynchronous communication channels with irregular transmission times,” IEEE Trans. Autom. Control 48 (4), 670676 (2003).
180.Matveev, A. S. and Savkin, A. V., Estimation and Control over Communication Networks (Birkhauser, Boston, 2009).
181.Matveev, A. S., Teimoori, H. and Savkin, A. V., “A method for guidance and control of an autonomous vehicle in problems of border patrolling and obstacle avoidance,” Automatica 47 (3), 515–514 (2011).
182.Matveev, A. S., Teimoori, H. and Savkin, A. V., “Navigation of a unicycle-like mobile robot for environmental extremum seeking,” Automatica 47 (1), 8591 (2011).
183.Matveev, A. S., Teimoori, H. and Savkin, A. V., “Range-only measurements based target following for wheeled mobile robots,” Automatica 47 (1), 177184 (2011).
184.Matveev, A. S., Teimoori, H. and Savkin, A. V., “Method for tracking of environmental level sets by a unicycle-like vehicle,” Automatica 48 (9), 22522261 (2012).
185.Matveev, A. S., Wang, C. and Savkin, A. V., “Real-time navigation of mobile robots in problems of border patrolling and avoiding collisions with moving and deforming obstacles,” Robot. Auton. Syst. 60 (6), 769788 (2012).
186.Mayne, D. Q., Kerrigan, E. C., van Wyk, E. J. and Falugi, P., “Tube-based robust nonlinear model predictive control,” Int. J. Robust Nonlinear Control 21 (11), 13411353 (2011).
187.Mayne, D. Q. and Rakovic, S., “Model predictive control of constrained piecewise affine discrete-time systems,” Int. J. Robust Nonlinear Control 13 (3–4), 261279 (2003).
188.Micaelli, A. and Samson, C., “Trajectory tracking for unicycle-type and two-steering wheels mobile robots,” Technical Report INRIA: Technical Report No: 2097, Institut national de recherche en informatique et en automatique (1993).
189.Minguez, J. and Montano, L., “The Ego-Kinodynamic Space: Collision Avoidance for Any Shape Mobile Robots with Kinematic and Dynamic Constraints,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, Las Vegas, NV, USA (2003) pp. 637643.
190.Minguez, J. and Montano, L., “Nearness diagram (ND) navigation: Collision avoidance in troublesome scenarios,” IEEE Trans. Robot. Autom. 20 (1), 4559 (2004).
191.Minguez, J. and Montano, L., “Sensor-based robot motion generation in unknown, dynamic and troublesome scenarios,” Robot. Auton. Syst. 52 (4), 290311 (2005).
192.Minguez, J. and Montano, L., “Extending collision avoidance methods to consider the vehicle shape, kinematics, and dynamics of a mobile robot,” IEEE Trans. Robot. 25 (2), 367381 (2009).
193.Moghadam, P., Wijesoma, W. S. and Dong, J. F., “Improving Path Planning and Mapping Based on Stereo Vision and Lidar,” Proceedings of the International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam (2008).
194.Montesano, L., Minguez, J. and Montano, L., “Modeling dynamic scenarios for local sensor-based motion planning,” Auton. Robots 25 (3), 231251 (2008).
195.Morgan, D., Chung, S.-J. and Hadaegh, F. Y., “Decentralized Model Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming,” Proceedings of the AAS/AIAA Space Flight Mechanics Conference, Kauai, HI, USA (2013).
196.Nak, Y. K. and Simmons, R., “The Lane-Curvature Method for Local Obstacle Avoidance,” IEEE International Conference on Robotics and Automation, Vol. 3, Lueven, Belgium (Nov. 1998) pp. 16151621.
197.Ng, J., An Analysis of Mobile Robot Navigation Algorithms in Unknown Environments, Ph.D. Thesis, The University of Western Australia, Perth, Australia 2010.
198.Ng, J. and Braunl, T., “Performance comparison of bug navigation algorithms,” J. Intell. Robot. Syst. 50 (1), 7384 (2007).
199.Nishi, T., Ando, M. and Konishi, M., “Distributed route planning for multiple mobile robots using an augmented lagrangian decomposition and coordination technique,” IEEE Trans. Robot. 21 (6), 11911200 (2005).
200.Noborio, H., “A sufficient condition for designing a family of sensor based deadlock free planning algorithms,” Adv. Robot. 7 (5), 413433 (1993).
201.Noborio, H. and Yoshioka, T., “An On-line and Deadlock-free Path Planning Algorithm Based on World Topology,” Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, Yokohama, Japan (Dec. 1993) pp. 14251430.
202.Ogren, P. and Leonard, N., “A Tractable Convergent Dynamic Window Approach to Obstacle Avoidance,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, Lausanne, Switzerland (2002) pp. 595600.
203.Ogren, P. and Leonard, N. E., “A convergent dynamic window approach to obstacle avoidance,” IEEE Trans. Robot. 21 (2), 188195 (2005).
204.Ohki, T., Nagatani, K. and Yoshida, K., “Local path planner for mobile robot in dynamic environment based on distance time transform method,” Adv. Robot. 26 (14), 16231647 (2012).
205.Ordonez, C., Collins, E. G. Jr., Selekwa, M. F. and Dunlap, D. D., “The virtual wall approach to limit cycle avoidance for unmanned ground vehicles,” Robot. Auton. Syst. 56 (8), 645657 (2008).
206.Ostertag, E., “An improved path-following method for mixed h-2/h-infinity controller design,” IEEE Trans. Autom. Control 53 (8), 19671971 (2008).
207.Owen, E. and Montano, L., “A Robocentric Motion Planner for Dynamic Environments Using the Velocity Space,” IEEE International Conference on Intelligent Robots and Systems, Vol. 1, Beijing, China (2006) pp. 28332838.
208.Pallottino, L., Scordio, V. G., Bicchi, A. and Frazzoli, E., “Decentralized cooperative policy for conflict resolution in multivehicle systems,” IEEE Trans. Robot. 23 (6), 11701183 (2007).
209.Park, J. M., Kim, D. W., Yoon, Y. S., Kim, H. J. and Yi, K. S., “Obstacle avoidance of autonomous vehicles based on model predictive control,” Proc. Inst. Mech. Eng. 223 (12), 14991516 (2009).
210.Peng, J. and Akella, S., “Coordinating multiple robots with kinodynamic constraints along specified paths,” Int. J. Robot. Res. 24 (4), 295310 (2005).
211.Peng, W., Baocang, D. and Tao, Z., “Distributed Receding Horizon Control for Nonholonomic Multi-vehicle System with Collision Avoidance,” Proceedings of the 31st Chinese Control Conference, Hefei, China (2012) pp. 63276332.
212.Petti, S. and Fraichard, T., “Partial Motion Planning Framework for Reactive Planning within Dynamic Environments,” Proceedings of the AAAI International Conference on Advanced Robotics, Barcelona, Spain (2005).
213.Qu, Zh., Wang, J. and Plaisted, C. E., “A new analytical solution to mobile robot trajectory generation in the presence of moving obstacles,” IEEE Trans. Robot. 20 (6), 978993 (2004).
214.Raffard, R. L., Tomlin, C. J. and Boyd, S. P., “Distributed Optimization for Cooperative Agents: Application to Formation Flight,” Proceedings of the 43rd IEEE Conference on Decision and Control, Vol. 3, Paradise Island, Bahamas (2004) pp. 24532459.
215.Rakovic, S. V., Kerrigan, E. C., Kouramas, K. I. and Mayne, D. Q., “Invariant approximations of the minimal robust positively invariant set,” IEEE Trans. Autom. Control 50 (3), 406410 (2005).
216.Rashid, A. T., Ali, A. A., Frasca, M. and Fortuna, L., “Multi-robot collision-free navigation based on reciprocal orientation,” Robot. Auton. Syst. 60 (10), 12211230 (2012).
217.Reeds, J. A. and Shepp, L. A., “Optimal paths for a car that goes both forwards and backwards,” Pac. J. Math. 145 (2), 367393 (1990).
218.Reif, J. and Sharir, M., “Motion planning in the presence of moving obstacles,” J. ACM 41 (4), 764790 (1994).
219.Ren, J., McIsaac, K. A. and Patel, R. V., “Modified newton's method applied to potential field–based navigation for mobile robots,” IEEE Trans. Robot. 22 (2), 384391 (2006).
220.Ren, J., McIsaac, K. A. and Patel, R. V., “Modified Newton's method applied to potential field-based navigation for nonholonomic robots in dynamic environments,” Robotica 26 (1), 117127 (2008).
221.Reveliotis, S. A. and Roszkowska, E., “Conflict resolution in free-ranging multivehicle systems: A resource allocation paradigm,” IEEE Trans. Robot. 27 (2), 283296 (2011).
222.Richards, A. and How, J. P., “Robust Stable Model Predictive Control with Constraint Tightening,” Proceedings of the American Control Conference, Minneapolis, MN, USA (2006) pp. 15571562.
223.Richards, A. and How, J. P., “Robust variable horizon model predictive control for vehicle maneuvering,” Int. J. Robust Nonlinear Control 16 (7), 333351 (2006).
224.Richards, A. and How, J. P., “Robust distributed model predictive control,” Int. J. Control 80 (9), 15171531 (2007).
225.Rodriguez-Seda, E. J. and Spong, M. W., “Guaranteed Safe Motion of Multiple Lagrangian Systems with Limited Actuation,” Proceedings of the 51st IEEE Conference on Decision and Control, Maui, HI, USA (2012) pp. 27732780.
226.Roussos, G., Dimarogonas, D. V. and Kyriakopoulos, K. J., “3d navigation and collision avoidance for nonholonomic aircraft-like vehicles,” Int. J. Adapt. Control Signal Process. 24 (10), 900920 (2010).
227.Roussos, G. P., Chaloulos, G., Kyriakopoulos, K. J. and Lygeros, J., “Control of Multiple Non-Holonomic Air Vehicles Under Wind Uncertainty Using Model Predictive Control and Decentralized Navigation Functions,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico (2008) pp. 12251230.
228.Rubagotti, M., Raimondo, D. M., Ferrara, A. and Magni, L., “Robust model predictive control with integral sliding mode in continuous-time sampled-data nonlinear systems,” IEEE Trans. Autom. Control 56 (3), 556570 (2010).
229.Saggiani, G. M. and Teodorani, B., “Rotary wing UAV potential applications: An analytical study through a matrix method,” Aircr. Eng. Aerosp. Technol., Int. J. 76, 614 (2004).
230.Samson, C., “Control of chained systems: Application to path-following and time-varying point stabilization of mobile robots,” IEEE Trans. Autom. Control 40, 6477 (1995).
231.Sankaranarayanan, A. and Vidyasagar, M., “Path Planning for Moving a Point Object Amidst Unknown Obstacles in a Plane: A New Algorithm and a General Theory for Algorithm Development,” Proceedings of the IEEE International Conference on Decision and Control, Brighton, UK (Dec. 1991) pp. 11111119.
232.Sankaranarayanan, A. and Vidyasagar, M., “A New Algorithm for Robot Curve-following Amidst Unknown Obstacles, and a Generalization of Maze-Searching,” Proceedings of the IEEE International Conference on Robotics and Automation, Nice, France (May 1992) pp. 24872494.
233.Sathyaraj, B. M., Jain, L. C., Finn, A. and Drake, S., “Multiple UAVs path planning algorithms: A comparative study,” Fuzzy Optim. Decis. Mak. 7 (3), 257267 (2008).
234.Savkin, A. V., “Coordinated collective motion of groups of autonomous mobile robots: Analysis of Vicsek's model,” IEEE Trans. Autom. Control 49 (6), 981983 (2004).
235.Savkin, A. V., “Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control,” Automatica 42 (1), 5162 (2006).
236.Savkin, A. V. and Cheng, T. M., “Detectability and output feedback stabilizability of nonlinear networked control systems,” IEEE Trans. Autom. Control 52 (4), 730735 (2007).
237.Savkin, A. V. and Hoy, M., “Reactive and the shortest path navigation of a wheeled mobile robot in cluttered environments,” Robotica 31 (2), 323330 (2013).
238.Savkin, A. V., Javed, F. and Matveev, A. S., “Optimal distributed blanket coverage self-deployment of mobile wireless sensor networks,” IEEE Commun. Lett. 16 (6), 949951 (2012).
239.Savkin, A. V. and Teimoori, H., “Bearings-only guidance of a unicycle-like vehicle following a moving target with a smaller minimum turning radius,” IEEE Trans. Autom. Control 55 (10), 23902395 (2010).
240.Savkin, A. V. and Wang, C., “A simple biologically inspired algorithm for collision-free navigation of a unicycle-like robot in dynamic environments with moving obstacles,” Robotica 31 (6), 9931001 (2013).
241.Schlegel, C., “Fast Local Obstacle Avoidance Under Kinematic and Dynamic Constraints for a Mobile Robot,” Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, Victoria, Canada (1998) pp. 594599.
242.Scholte, E. and Campbell, M. E., “Robust nonlinear model predictive control with partial state information,” IEEE Trans. Control Syst. Technol. 16 (4), 636651 (2008).
243.Scokaert, P. O. and Mayne, D. Q., “Min–max feedback model predictive control for constrained linear systems,” IEEE Trans. Autom. Control 43 (8), 11361142 (1998).
244.Seder, M., Macek, K. and Petrovic, I., “An Integrated Approach to Realtime Mobile Robot Control in Partially Known Indoor Environments,” Proceedings of the 31st Annual Conference of the IEEE Industrial Electronics Society, Raleigh, NC, USA (Nov. 2005) pp. 17851790
245.Sharma, R., Saunders, J. and Beard, R., “Reactive path planning for micro air vehicles using bearing-only measurements,” J. Intell. Robot. Syst. 65 (1), 409416 (2012).
246.Shi, C., Wang, Y. and Yang, J., “A local obstacle avoidance method for mobile robots in partially known environment,” Robot. Auton. Syst. 58 (5), 425434 (2010).
247.Shiller, Z., Gal, O. and Rimon, E., “Safe Navigation in Dynamic Environments,” In: Robot Design, Dynamics and Control (CISM Courses and Lectures) (Schiehlen, W. and Parenti-Castelli, V., eds.) Vol. 524 (Springer, Vienna, 2010) pp. 225232.
248.Shim, D. H., Chung, H. and Sastry, S. S., “Conflict-free navigation in unknown urban environments,” IEEE Robot. Autom. Mag. 13 (3), 2733 (2006).
249.Shim, D. H. and Sastry, S., “An Evasive Maneuvering Algorithm for UAVs in See-and-Avoid Situations,” Proceedings of the American Control Conference, Minneapolis, MN, USA (2007) pp. 38863891.
250.Shin, J. and Kim, H. J., “Nonlinear model predictive formation flight,” IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 39 (5), 11161125 (2009).
251.Shkel, A. M. and Lumelsky, V. J., “Incorporating body dynamics into sensor-based motion planning: The maximum turn strategy,” IEEE Trans. Robot. Autom. 13 (6), 873880 (1997).
252.Shoenwald, D. A., “AUVs: In space, air, water, and on the ground,” IEEE Control Syst. Mag. 20 (6), 1519 (2000).
253.Simmons, R., “The Curvature–Velocity Method for Local Obstacle Avoidance,” IEEE International Conference on Robotics and Automation, Vol. 4, Minneapolis, MI, USA (Nov. 1996) pp. 33753382.
254.Sisbot, E. A., Marin-Urias, L. F., Alami, R. and Simeon, T., “A human aware mobile robot motion planner,” IEEE Trans. Robot. 23 (5), 874883 (2007).
255.Siva, E. and Maciejowski, J. M., “Robust Multiplexed MPC for Distributed Multi–Agent Systems,” Proceedings of the 18th IFAC World Congress, Milano, Italy (2011) pp. 251256.
256.Skrjanc, I. and Klancar, G., “Optimal cooperative collision avoidance between multiple robots based on Bernstein–Bezier curves,” Robot. Auton. Syst. 58 (1), 19 (2010).
257.Snape, J., van den Berg, J., Guy, S. J. and Manocha, D., “Independent Navigation of Multiple Mobile Robots with Hybrid Reciprocal Velocity Obstacles,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA (2009) pp. 59175922.
258.Snape, J., van den Berg, J., Guy, S. J. and Manocha, D., “The hybrid reciprocal velocity obstacle,” IEEE Trans. Robot. 27 (4), 696706 (2011).
259.Solea, R. and Nunes, U., “Trajectory planning and sliding-mode control based trajectory-tracking for cybercars,” Integr. Comput.–Aided Eng. 14 (1), 3347 (2007).
260.Srinivasan, M. V., Zhang, S. W., Chahl, J. S., Barth, E. and Venkatesh, S., “How honeybees make grazing landings on flat surfaces,” Biol. Cybern. 83 (3), 171183 (2000).
261.Srinivasan, S., Ramamritham, K. and Kulkarni, P., “ACE, in the Hole: Adaptive Contour Estimation Using Collaborating Mobile Sensors,” Proceedings of the International Conference on Information Processing in Sensor Networks, St Louis, MO, USA (Apr. 2008) pp. 147158.
262.Stachniss, C. and Burgard, W., “An Integrated Approach to Goal-Directed Obstacle Avoidance Under Dynamic Constraints for Dynamic Environments,” Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, Lausanne, Switzerland (2002) pp. 508513.
263.Stipanovic, D. M., Hokayem, P. F., Spong, M. W. and Siljak, D. D., “Cooperative avoidance control for multiagent systems,” J. Dyn. Syst. Meas. Control 129 (5), 699707 (2007).
264.Summers, T. H. and Lygeros, J., “Distributed Model Predictive Consensus via the Alternating Direction Method of Multipliers,” Proceedings of the Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA (2012) pp. 7984.
265.Suri, S., Vicari, E. and Widmayer, P., “Simple robots with minimal sensing: From local visibility to global geometry,” Int. J. Robot. Res. 27 (9), 10551067 (2008).
266.Susca, S., Bullo, F. and Martinez, S., “Monitoring environmental boundaries with a robotic sensor network,” IEEE Trans. Control Syst. Technol. 16 (2), 288296 (2008).
267.Tahirovic, A. and Magnani, G., “PB/MPC Navigation Planner,” In: Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning (Springer, London, 2013) pp. 1124.
268.Tanner, H. G. and Boddu, A., “Multiagent navigation functions revisited,” IEEE Trans. Robot. 28 (6), 13461359 (2012).
269.Tarnopolskaya, T., Fulton, N. and Maurer, H., “Synthesis of optimal bang-bang control for cooperative collision avoidance for aircraft (ships) with unequal linear speeds,” J. Optim. Theory Appl. 155 (1), 115144 (2012).
270.Teimoori, H. and Savkin, A. V., “A biologically inspired method for robot navigation in a cluttered environment,” Robotica 28 (5), 637648 (2010).
271.Teimoori, H. and Savkin, A. V., “Equiangular navigation and guidance of a wheeled mobile robot based on range-only measurements,” Robot. Auton. Syst. 58 (2), 203215 (2010).
272.Thrun, S., “Learning occupancy grid maps with forward sensor models,” Auton. Robots 15 (2), 111127 (2003).
273.Toibero, J. M., Roberti, F. and Carelli, R., “Stable contour-following control of wheeled mobile robots,” Robotica 27 (1), 112 (2009).
274.Tovar, B., Murrieta-Cid, R. and LaValle, S. M., “Distance-optimal navigation in an unknown environment without sensing distances,” IEEE Trans. Robot. 23 (3), 506518 (2007).
275.Travis, W., Simmons, A. T. and Bevly, D. M., “Corridor Navigation with a LiDAR/INS Kalman Filter Solution,” Proceedings of the IEEE Intelligent Vehicles Symposium, Tokyo, Japan (2005) pp. 343348.
276.Trevai, C., Ota, J. and Arai, T., “Multiple mobile robot surveillance in unknown environments,” Adv. Robot. 21 (7), 729749 (2007).
277.Tucker, V. A., “The deep fovea, sideways vision and spiral flight paths in raptors,” J. Exp. Biol. 203 (24), 37453754 (2001).
278.Ulrich, I. and Borenstein, J., “VFH*: Local Obstacle Avoidance with Look–ahead Verification,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 3, San Francisco, CA, USA (2000) pp. 25052511.
279.USDoD, “Unmanned aircraft systems roadmap, 2005–2030,” Technical Report, Office of the Secretary of Defense, Washington (2005).
280.Utkin, V. I., Sliding Modes in Control Optimization (Springer–Verlag, Berlin, 1992).
281.Vaccarini, M. and Longhi, S., “Formation Control of Marine Veihicles via Real-time Networked Decentralized MPC,” Proceedings of the 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece (2009) pp. 428433.
282.Valbuena, L. and Tanner, H., “Hybrid potential field based control of differential drive mobile robots,” J. Intell. Robot. Syst. 68 (3–4), 307322 (2012).
283.van den Berg, J., Guy, S. J, Lin, M. and Manocha, D., Reciprocal n-Body Collision Avoidance, Springer Tracts in Advanced Robotics Series, Vol. 70 (Pradalier, C.et al., eds.) (Springer, Berlin, Germay, 2011) pp. 319.
284.van den Berg, J. and Overmars, M., “Planning time-minimal safe paths amidst unpredictably moving obstacles,” Int. J. Robot. Res. 27 (11–12), 12741294 (2008).
285.van den Berg, J., Snape, J., Guy, S. J. and Manocha, D., “Reciprocal Collision Avoidance with Acceleration-Velocity Obstacles,” Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China (2011) pp. 34753482.
286.van den Berg, J., Wilkie, D., Guy, S. J., Niethammer, M. and Manocha, D., “Lqg-obstacles: Feedback Control with Collision Avoidance for Mobile Robots with Motion and Sensing Uncertainty,” Proceedings of the IEEE International Conference on Robotics and Automation, St. Paul, MN, USA (2012) pp. 346353.
287.Victorino, A. C., Rives, P. and Borrelly, J.-J., “Safe navigation for indoor mobile robots. Part I: A sensor-based navigation framework,” Int. J. Robot. Res. 22 (12), 10051118 (2003).
288.Vitus, M. P., Pradeep, V., Hoffmann, G. M., Waslander, S. L. and Tomlin, C. J., “Tunnel-MILP: Path Planning with Sequential Convex Polytopes,” Proceedings of the AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN, USA (2008) pp. 113.
289.Vlassis, N. A., Sgouros, N. M., Efthivolidis, G. and Papakonstantinou, G., “Global Path Planning for Autonomous Qualitative Navigation,” Proceedings of the IEEE Conference on Tools with Artificial Intelligence, Toulouse, France (Nov. 1996) pp. 354359.
290.Savkin, A. V. and Teimoori, H., “Decentralized navigation of groups of wheeled mobile robots with limited communication,” IEEE Trans. Robot. 26 (10), 10991104 (2010).
291.Wakasa, Y., Arakawa, M., Tanaka, K. and Akashi, T., “Decentralized Model Predictive Control via Dual Decomposition,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico (2008) pp. 381386.
292.Wang, C., Matveev, A. S., Savkin, A. V., Cloutz, R. and Nguyen, H.T., “A Real-time Obstacle Avoidance Strategy for Safe Autonomous Navigation of Intelligent Hospital Beds in Dynamic Uncertain Environments,” Proceedings of Australasian Conference on Robotics and Automation (Dec. 2013).
293.Wang, C., Matveev, A. S., Savkin, A. V., Nguyen, T. N. and Nguyen, H. T., “A Collision Avoidance Strategy for Safe Autonomous Navigation of an Intelligent Electric-Powered Wheelchair in Dynamic Uncertain Environments with Moving Obstacles,” Proceedings of the European Control Conference, Zurich, Switzerland (Jul. 2013) pp. 43824387.
294.Wang, C., Savkin, A. V., Nguyen, T. N. and Nguyen, H. T., “A Novel Algorithm for Safe Navigation of Intelligent Robotic Wheelchairs for Severely Disabled People in Crowded Dynamic Environments,” Proceedings of the International Conference on Control, Automation, Robotics and Vision, Guangzhou, China (2012).
295.Wang, Y. and Chirikjian, G. S., “A New Potential Field Method for Robot Path Planning,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2, San Francisco, CA, USA (2000) pp. 977982.
296.Weihua, Z. and Go, T. H., “Robust decentralized formation flight control,” Int. J. Aerospace Eng. available at: www.hindawi.com/journals/ijae/2011/157590/ (2011), online.
297.Widyotriatmo, A. and Hong, K., “Navigation function-based control of multiple wheeled vehicles,” IEEE Trans. Ind. Electron. 58 (5), 18961906 (2011).
298.Wu, A. and How, J., “Guaranteed infinite horizon avoidance of unpredictable, dynamically constrained obstacles,” Auton. Robots 32 (3), 227242 (2012).
299.Yang, J. M. and Kim, J. H., “Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots,” IEEE Trans. Robot. Autom. 15 (3), 578587 (1999).
300.Yang, K., Gan, S. and Sukkarieh, S., “An efficient path planning and control algorithm for RUAV's in unknown and cluttered environments,” J. Intell. Robot. Syst. 57 (1), 101122 (2010).
301.Yang, X., Alvarez, L. and Bruggemann, T., “A 3D collision avoidance strategy for UAVs in a non-cooperative environment,” J. Intell. Robot. Syst. 70 (1–4), 315327 (2012).
302.Yata, T., Kleeman, L. and Yuta, S., “Wall Following Using Angle Information Measured by a Single Ultrasonic Transducer,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2, Leuven, Belgium (1998) pp. 15901596.
303.Yoon, Y., Shin, J., Kim, H. J., Park, Y. and Sastry, S., “Model-predictive active steering and obstacle avoidance for autonomous ground vehicles,” Control Eng. Pract. 17 (7), 741750 (2009).
304.Yu, H., Sharma, R., Beard, R. W. and Taylor, C. N., “Observability-Based Local Path Planning and Collision Avoidance for Micro Air Vehicles using Bearing-only Measurements,” Proceedings of the American Control Conference, San Francisco, CA, USA (2011) pp. 46494654.
305.Zhang, Ch., Arnold, D., Ghods, N., Siranosian, A. and Krstic, M., “Source seeking with non–holonomic unicycle without position measurement and with tuning of forward velocity,” Syst. Control Lett. 56 (3), 245252 (2007).
306.Zhang, F., Fratantoni, D. M., Paley, D. A., Lund, J. M. and Leonard, N. E., “Control of coordinated patterns for ocean sampling,” Int. J. Control 80 (7), 11861199 (2007).
307.Zhang, F., Justh, E. W. and Krishnaprasad, P. S., “Boundary Following Using Gyroscopic Control,” Proceedings of the 43rd IEEE Conference on Decision and Control, Vol. 5, Paradise Island, Bahamas (2004) pp. 52045209.
308.Zhang, F. and Leonard, N. E., “Cooperative control and filtering for cooperative exploration,” IEEE Trans. Autom. Control 55 (3), 650663 (2010).
309.Zheng, C., Li, L., Xu, F., Sun, F. and Ding, M., “Evolutionary route planner for unmanned air vehicles,” IEEE Trans. Robot. 21 (4), 609620 (2005).
310.Zhipu, J. and Bertozzi, A. L., “Environmental Boundary Tracking and Estimation Using Multiple Autonomous Vehicles,” Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LU, USA (Dec. 2007) pp. 49184923.
311.Zhu, Y. and Ozguner, U., “Constrained Model Predictive Control for Nonholonomic Vehicle Regulation Problem,” Proceedings of the 17th IFAC World Congress, Seoul, South Korea (2008) pp. 95529557.
312.Zhu, Y., Zhang, T. and Song, J., “An Improved Wall Following Method for Escaping from Local Minimum in Artificial Potential Field Based Path Planning,” Proceedings of the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, Shanghai, China (2009) pp. 60176022.
313.Zhu, Y., Zhang, T., Song, J. and Li, X., “A new hybrid navigation algorithm for mobile robots in environments with incomplete knowledge,” Knowl.–Based Syst. 27, 302313 (2012).
314.Ziebart, B. D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bagnell, J. A., Hebert, M., Dey, A. K. and Srinivasa, S., “Planning–Based Prediction for Pedestrians,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St Louis, MO, USA (2009) pp. 39313936.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1945 *
Loading metrics...

Abstract views

Total abstract views: 1701 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd April 2018. This data will be updated every 24 hours.