Skip to main content
×
Home
    • Aa
    • Aa

Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey

  • Michael Hoy (a1), Alexey S. Matveev (a2) and Andrey V. Savkin (a1)
Summary
SUMMARY

We review a range of techniques related to navigation of unmanned vehicles through unknown environments with obstacles, especially those that rigorously ensure collision avoidance (given certain assumptions about the system). This topic continues to be an active area of research, and we highlight some directions in which available approaches may be improved. The paper discusses models of the sensors and vehicle kinematics, assumptions about the environment, and performance criteria. Methods applicable to stationary obstacles, moving obstacles and multiple vehicles scenarios are all reviewed. In preference to global approaches based on full knowledge of the environment, particular attention is given to reactive methods based on local sensory data, with a special focus on recently proposed navigation laws based on model predictive and sliding mode control.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author. E-mail: mch.hoy@gmail.com
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

4. M. A. Ahmadi-Pajouh , F. Towhidkhah , S. Gharibzadeh and M. Mashhadimalek , “Path planning in the hippocampo-prefrontal cortex pathway: An adaptive model based receding horizon planner,” Med. Hypotheses 68 (6), 14111415 (2007).

6. J. Alonso-Mora , A. Breitenmoser , P. Beardsley and R. Siegwart , “Reciprocal Collision Avoidance for Multiple Car-Like Robots,” Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA (2012) pp. 360366.

7. D. Althoff , J. Kuffner , D. Wollherr and M. Buss , “Safety assessment of robot trajectories for navigation in uncertain and dynamic environments,” Auton. Robot. 32 (3), 285302 (2012).

8. J. C. Alvarez , A. Shkel and V. Lumelsky , “Accounting for Mobile Robot Dynamics in Sensor-Based Motion Planning: Experimental Results,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 3, Lueven, Belgium (1998) pp. 22052210.

9. S. B. Andersson , “Curve tracking for rapid imaging in AFM,” IEEE Trans. Nanobiosci. 6 (4), 354361 (2007).

10. R. C. Arkin , “Motor schema based mobile robot navigation,” Int. J. Robot. Res. 8 (4), 92112 (1989).

11. R. C. Arkin , “Behavior-based robot navigation for extended domains,” Adapt. Behav. 1 (2), 201225 (1992).

12. L. Armesto , V. Girbes , M. Vincze , S. Olufs and P. Munoz-Benavent , “Mobile Robot Obstacle Avoidance Based on Quasi-Holonomic Smooth Paths,” In: Advances in Autonomous Robotics (Lecture Notes in Computer Science), Vol. 7429 ( G. Herrmann et al., eds.) (Springer, Berlin, Germany, 2012) pp. 244255.

14. R. Balakrishna and A. Ghosal , “Modeling of slip for wheeled mobile robots,” IEEE Trans. Robot. Autom. 11 (1), 126132 (1995).

15. D. J. Balkcom , P. A. Kavathekar and M. T. Mason , “Time-optimal trajectories for an omni-directional vehicle,” Int. J. Robot. Res. 25 (10), 985999 (2006).

18. K. E. Bekris , D. K. Grady , M. Moll and L. E. Kavraki , “Safe distributed motion coordination for second-order systems with different planning cycles,” Int. J. Robot. Res. 31 (2), 129150 (2012).

19. K. E. Bekris , K. I. Tsianos and L. E. Kavraki , “Safe and distributed kinodynamic replanning for vehicular networks,” Mobile Netw. Appl. 14 (3), 292308 (2009).

20. F. Belkhouche , “Reactive path planning in a dynamic environment,” IEEE Trans. Robot. 25 (4), 902911 (2009).

21. S. Belkhous , A. Azzouz , M. Saad , V. Nerguizian and C. Nerguizian , “A novel approach for mobile robot navigation with dynamic obstacles avoidance,” J. Intell. Robot. Syst. 44 (3), 187201 (2005).

22. C. Belta , A. Bicchi , M. Egerstedt , E. Frazzoli , E. Klavins and G. J. Pappas , “Symbolic planning and control of robot motion [grand challenges of robotics],” IEEE Robot. Autom. Mag. 14 (1), 6170 (2007).

23. A. Bemporad and D. Barcelli , “Decentralized model predictive control,” In: Lecture Notes in Control and Information Sciences, Vol. 406 ( A. Bemporad , M. Heemels and M. Johansson , eds.) (Springer, London, 2010) pp. 149178.

24. A. Bemporad , M. D. Marco and A. Tesi , “Sonar-based wall-following control of mobile robots,” ASME J. Dyn. Syst. Meas. Control 122 (1), 226230 (2000).

26. M. Kemp , A. L. Bertozzi and D. Marthaler , “Multi–UUV Perimeter Surveillance,” Proceedings of the IEEE/OES Autonomous Underwater Vehicles Conference, Sebasco, ME, USA (Jun. 2004) pp. 102107.

27. E. Besada-Portas , L. de la Torre , J. M. de la Cruz and B. de Andres-Toro , “Evolutionary trajectory planner for multiple UAVs in realistic scenarios,” IEEE Trans. Robot. 26 (4), 619634 (2010).

28. G. Bevan , H. Gollee and J. O'reilly , “Automatic lateral emergency collision avoidance for a passenger car,” Int. J. Control 80 (11), 17511762 (2007).

29. A. Bicchi , G. Casalino and C. Santilli , “Planning shortest bounded-curvature paths for a class of nonholonomic vehicles among obstacles,” J. Intell. Robot. Syst. 16 (4), 387405 (1996).

30. L. Blackmore , M. Ono and B. C. Williams , “Chance-constrained optimal path planning with obstacles,” IEEE Trans. Robot. 27 (6), 10801094 (2011).

31. J.-L. Blanco , J. Gonzalez and J.-A. Fernandez-Madrigal , “Extending obstacle avoidance methods through multiple parameter-space transformations,” Auton. Robots 24 (1), 2948 (2008).

32. N. W. Bode , A. J. Wood and D. W. Franks , “Social networks and models for collective motion in animals,” Behav. Ecol. Sociobiol. 65 (2), 117130 (2011).

33. F. Bonin-Font , A. Ortiz and G. Oliver , “Visual navigation for mobile robots: A survey,” J. Intell. Robot. Syst. 53 (3), 263296 (2008).

34. V. Boquete , R. Garcia , R. Barea and M. Mazo , “Neural control of the movements of a wheelchair,” J. Intell. Robot. Syst. 25 (3), 213226 (1999).

35. S. Bouraine , T. Fraichard and H. Salhi , “Provably safe navigation for mobile robots with limited field-of-views in dynamic environments,” Auton. Robots 32 (3), 267283 (2012).

37. E. Burian , D. Yoeger , A. Bradley and H. Singh , “Gradient Search with Autonomous Underwater Vehicle using Scalar Measurements,” Proceedings of the IEEE Symposium on Underwater Vehicle Technology, Monterey, CA (Jun. 1996) pp. 8698.

38. M. Caccia , R. Bono and G. Bruzzone , “Variable-configuration UUVs for marine science applications,” IEEE Robot. Autom. Mag. 6 (2), 2232 (1999).

41. R. Carelli and E. O. Freire , “Corridor navigation and wall-following stable control for sonar-based mobile robots,” Robot. Auton. Syst. 45 (12), 235247 (2003).

43. D. W. Casbeer , S. M. Li , R. W. Beard , T. W. McLain and R. K. Mehra , “Forest Fire Monitoring Using Multiple Small UAVs,” Proceedings of the 2005 American Control Conference, Vol. 5, Minneapolis, MA, USA (2005) pp. 35303535.

44. A. Chakravarthy and D. Ghose , “Obstacle avoidance in a dynamic environment: A collision cone approach,” IEEE Trans. Syst. Man Cybern. 28 (5), 562574 (1998).

48. T. M. Cheng , A. V. Savkin and F. Javed , “Decentralized control of a group of mobile robots for deployment in sweep coverage,” Robot. Auton. Syst. 59 (7–8), 497507 (2011).

49. H. Chitsaz , S. M. LaValle , D. J. Balkcom and M. T. Mason , “Minimum wheel-rotation paths for differential-drive mobile robots,” Int. J. Robot. Res. 28 (1), 6680 (2009).

50. W. Chung , S. Kim , M. Choi , J. Choi , H. Kim , C-B. Moon and J-B. Song , “Safe navigation of a mobile robot considering visibility of environment,” IEEE Trans. Ind. Electron. 56 (10), 39413950 (2009).

52. S. Cifuentes , J. M. Giron-Sierra and J. Jimenez , “Robot navigation based on discrimination of artificial fields: Application to single robots,” Adv. Robot. 26 (5–6), 605626 (2012).

53. J. Cochran and M. Krstic , “Nonholonomic source seeking with tuning of angular velocity,” IEEE Trans. Autom. Control 54 (4), 717731 (2009).

54. L. Consolini and M. Tosques , “A path following problem for a class of non-holonomic control systems with noise,” Automatica 41 (6), 10091016 (2005).

55. R. V. Cowlagi and P. Tsiotras , “Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic vehicles,” IEEE Trans. Robot. 28 (2), 379395 (2012).

56. R. Cui , B. Gao and J. Guo , “Pareto-optimal coordination of multiple robots with safety guarantees,” Auton. Robots 32 (3), 189205 (2012).

57. N. Dadkhah and B. Mettler , “Survey of motion planning literature in the presence of uncertainty: Considerations for UAV guidance,” J. Intell. Robot. Syst. 65 (1), 233246 (2012).

58. J. De Schutter , T. De Laet , J. Rutgeerts , W. Decra , R. Smits , E. Aertbelian , K. Claes and H. Bruyninckx , “Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty,” Int. J. Robot. Res. 26 (5), 433455 (2007).

59. M. Defoort , A. Kokosy , T. Floquet , W. Perruquetti and J. Palos , “Motion planning for cooperative unicycle-type mobile robots with limited sensing ranges: A distributed receding horizon approach,” Robot. Auton. Syst. 57 (11), 10941106 (2009).

62. V. Desaraju and J. How , “Decentralized path planning for multi-agent teams with complex constraints,” Auton. Robots 32 (4), 385403 (2012).

64. R. Diankov and J. Kuffner , “Randomized Statistical Path Planning,” Proceedings of the 2007 IEEE/RSJ International Conference on Robots and Systems, San Diego, CA, USA (2007) pp. 16.

65. D. V. Dimarogonas and K. J. Kyriakopoulos , “Decentralized navigation functions for multiple robotic agents with limited sensing capabilities,” J. Intell. Robot. Syst. 48 (3), 411433 (2007).

66. D. V. Dimarogonas and K. J. Kyriakopoulos , “Connectedness preserving distributed swarm aggregation for multiple kinematic robots,” IEEE Trans. Robot. 24 (5), 12131223 (2008).

67. D. V. Dimarogonas , S. G. Loizou , K. J. Kyriakopoulos and M. M. Zavlanos , “A feedback stabilization and collision avoidance scheme for multiple independent non-point agents,” Automatica 42 (2), 229243 (2006).

68. B. Douillard , D. Fox , F. Ramos and H. Durrant-Whyte , “Classification and semantic mapping of urban environments,” Int. J. Robot. Res. 30 (1), 532 (2011).

69. N. E. Du Toit and J. W. Burdick , “Robot motion planning in dynamic, uncertain environments,” IEEE Trans. Robot. 28 (1), 101115 (2012).

70. L. E. Dubins , “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents,” Am. J. Math. 79 (3), 497516 (1957).

71. H. Durrant-Whyte and T. Bailey , “Simultaneous localization and mapping: Part I,” IEEE Robot. Autom. Mag. 13 (2), 99110 (2006).

76. J. L. Fernandez , R. Sanz , J. A. Benayas and A. R. Diaguez , “Improving collision avoidance for mobile robots in partially known environments: The beam curvature method,” Robot. Auton. Syst. 46 (4), 205219 (2004).

78. P. Fiorini and Z. Shiller , “Time Optimal Trajectory Planning in Dynamic Environments,” Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA (1996) pp. 15531558.

79. P. Fiorini and Z. Shiller , “Motion planning in dynamic environments using velocity obstacles,” Int. J. Robot. Res. 17 (7), 760772 (1998).

80. G. Flierl , D. Grunbaum , S. Levin and D. Olson , “From individuals to aggregations: The interplay between behavior and physics,” J. Theor. Biol. 196 (4), 397454 (1999).

81. A. Foka and P. Trahanias , “Probabilistic autonomous robot navigation in dynamic environments with human motion prediction,” Int. J. Soc. Robot. 2 (1), 7994 (2010).

83. D. Fox , W. Burgard and S. Thrun , “The dynamic window approach to collision avoidance,” IEEE Robot. Autom. Mag. 4 (1), 2333 (1997).

84. T. Fraichard , “Trajectory planning in a dynamic workspace: A state–time space approach,” Adv. Robot. 13 (1), 7594 (1999).

86. A. Fujimori , M. Teramoto , P. N. Nikiforuk and M. M. Gupta , “Cooperative collision avoidance between multiple mobile robots,” J. Robot. Syst. 17 (7), 347363 (2000).

87. Y. Gabriely and E. Rimon , “CBUG: A quadratically competitive mobile robot navigation algorithm,” IEEE Trans. Robot. 24 (6), 14511457 (2008).

88. M. Galicki , “Collision-free control of an omni-directional vehicle,” Robot. Auton. Syst. 57 (9), 889900 (2009).

90. S. S. Ge and Y. J. Cui , “New potential functions for mobile robot path planning,” IEEE Trans. Robot. Autom. 16 (5), 615620 (2000).

91. S. S. Ge and Y. J. Cui , “Dynamic motion planning for mobile robots using potential field method,” Auton. Robots 13 (3), 207222 (2002).

92. S. S. Ge , X. Lai and A. A. Mamun , “Boundary following and globally convergent path planning using instant goals,” IEEE Trans. Syst. Man Cybern. 35 (2), 240254 (2005).

93. S. S. Ge , X. Lai and A. A. Mamun , “Sensor-based path planning for nonholonomic mobile robots subject to dynamic constraints,” Robot. Auton. Syst. 55 (7), 513526 (2007).

94. T. Gecks and D. Henrich , “Sensor-based Online Planning of Time-optimized Paths in Dynamic Environments,” In: Advances in Robotics Research ( T. Krager and F. M. Wahl , eds.) (Springer, Berlin–Heidelberg, 2009) pp. 5363.

95. R. W. Ghrist and D. E. Koditschek , “Safe cooperative robot dynamics on graphs,” SIAM J. Control Optim. 40 (5), 15561575 (2002).

97. C. Goerzen , Z. Kong and B. Mettler , “A survey of motion planning algorithms from the perspective of autonomous UAV guidance,” J. Intell. Robot. Syst. 57 (1–4), 65100 (2009).

99. R. Gonzalez , M. Fiacchini , J. L. Guzman , T. Alamo and F. Rodriguez , “Robust tube-based predictive control for mobile robots in off-road conditions,” Robot. Auton. Syst. 59 (10), 711726 (2011).

100. L. Gracia and J. Tornero , “Kinematic modeling and singularity of wheeled mobile robots,” Adv. Robot. 21 (7), 793816 (2007).

101. L. Gracia and J. Tornero , “Kinematic modeling of wheeled mobile robots with slip,” Adv. Robot. 21 (11), 12531279 (2007).

103. E. Gratli and T. Johansen , “Path planning for UAVs under communication constraints using SPLAT! and MILP,” J. Intell. Robot. Syst. 65 (1), 265282 (2012).

104. W. E. Green and P. Y. Oh , “Optic-flow-based collision avoidance,” IEEE Robot. Autom. Mag. 15 (1), 96103 (2008).

110. M. Hoy , A. S. Matveev and A. V. Savkin , “Collision free cooperative navigation of multiple wheeled robots in unknown cluttered environments,” Robot. Auton. Syst. 60 (10), 12531266 (2012).

111. M. Hoy and A. V. Savkin , “A method of boundary following by a wheeled mobile robot based on sampled range information,” J. Intell. Robot. Syst. 72 (3–4), 463482 (2013).

113. W. H. Huang , B. R. Fajen , J. R. Fink and W. H. Warren , “Visual navigation and obstacle avoidance using a steering potential function,” Robot. Auton. Syst. 54 (4), 288299 (2006).

114. M. Innocenti , L. Pollini and D. Turra , “A fuzzy approach to the guidance of unmanned air vehicles tracking moving targets,” IEEE Trans. Control Syst. Technol., 16 (6), 11251137 (2008).

115. M. E. Jefferies and W. Yeap , eds., Robotics and Cognitive Approaches to Spatial Mapping, Vol. 38 (Springer, Berlin Heidelberg, 2008).

117. V. Kallem , A. T. Komoroski and V. Kumar , “Sequential composition for navigating a nonholonomic cart in the presence of obstacles,” IEEE Trans. Robot. 27 (6), 11521159 (2011).

119. I. Kamon , E. Rimon and E. Rivlin , “Tangentbug: A range-sensor-based navigation algorithm,” Int. J. Robot. Res. 17 (9), 934953 (1998).

120. I. Kamon and E. Rivlin , “Sensory-based motion planning with global proofs,” IEEE Trans. Robot. Autom. 13 (6), 814822 (1997).

121. S. Karaman and E. Frazzoli , “Sampling–based algorithms for optimal motion planning,” Int. J. Robot. Res. 30 (7), 846894 (2011).

122. A. L. Bertozzi , M. Kemp and D. Marthaler , “Determining Environmental Boundaries: Asynchronous Communication and Physical Scales,” In: Cooperative Control ( V. Kumar , N. E. Leonard and A. S. Morse , eds.) (Springer Verlag, Berlin, 2004) pp. 2542.

123. F. Kendoul , “Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems,” J. Field Robot. 29 (2), 315378 (2012).

124. D. H. Kim and S. Shin , “New repulsive potential functions with angle distributions for local path planning,” Adv. Robot. 20 (1), 2548 (2006).

125. J. Kim , F. Zhang and M. Egerstedt , “Curve tracking control for autonomous vehicles with rigidly mounted range sensors,” J. Intell. Robot. Syst. 56 (2), 177197 (2009).

126. S. Kim , J. Russel and K. Koo , “Construction robot path-planning for earthwork operations,” J. Comput. Civ. Eng. 17 (2), 97104 (2003).

128. S. Koenig and M. Likhachev , “Fast replanning for navigation in unknown terrain,” IEEE Trans. Robot. 21 (3), 354363 (2005).

130. P. Krishnamurthy and F. Khorrami , “GODZILA: A low–resource algorithm for path planning in unknown environments,” J. Intell. Robot. Syst. 48 (3), 357373 (2007).

131. A. Krontiris and K. E. Bekris , “Using Minimal Communication to Improve Decentralized Conflict Resolution for Non-holonomic Vehicles,” Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA (2011) pp. 32353240.

132. J. K. Kuchar and L. C. Yang , “A review of conflict detection and resolution modeling methods,” IEEE Trans. Intell. Trans. Syst. 1 (4), 179189 (2000).

133. R. Kulić and Z. Vukić , “Methodology of concept control synthesis to avoid unmoving and moving obstacles,” J. Intell. Robot. Syst. 45 (1), 267294 (2006).

134. H. Kurniawati , Y. Du , D. Hsu and W. S. Lee , “Motion planning under uncertainty for robotic tasks with long time horizons,” Int. J. Robot. Res. 30 (3), 308323 (2011).

135. Y. Kuwata and J. P. How , “Cooperative distributed robust trajectory optimization using receding horizon MILP,” IEEE Trans. Control Syst. Technol. 19 (2), 423431 (2011).

136. Y. Kuwata , A. Richards , T. Schouwenaars and J. P. How , “Distributed robust receding horizon control for multivehicle guidance,” IEEE Trans. Control Syst. Technol. 15 (4), 627641 (2007).

137. E. Lalish and K. Morgansen , “Distributed reactive collision avoidance,” Auton. Robots 32 (3), 207226 (2012).

140. W. Langson , I. Chryssochoos , S. V. Rakovic and D. Q. Mayne , “Robust model predictive control using tubes,” Automatica 40 (1), 125133 (2004).

141. L. Lapierre and B. Jouvencel , “Robust nonlinear path-following control of an AUV,” IEEE J. Ocean. Eng. 33 (2), 89102 (2008).

142. L. Lapierre and R. Zapata , “A guaranteed obstacle avoidance guidance system,” Auton. Robots 32 (3), 177187 (2012).

143. L. Lapierre , R. Zapata and P. Lepinay , “Combined path-following and obstacle avoidance control of a wheeled robot,” Int. J. Robot. Res. 26 (4), 361375 (2007).

144. F. Large , C. Lauger and Z. Shiller , “Navigation among moving obstacles using the NLVO: Principles and applications to intelligent vehicles,” Auton. Robots 19 (2), 159171 (2005).

145. J. C. Latombe , Robot Motion Planning (Kluwer Academic Publishers, London, 1991).

147. S. L. Laubach and J. W. Burdick , “An Autonomous Sensor-Based Path-Planner for Planetary Microrovers,” Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA (May 1999) pp. 347354.

148. D. N. Lee , “Guiding movements by coupling taus,” Ecol. Psychol. 10 (3–4), 221250 (1998).

149. H. Lee , V. I. Utkin and A. Malinin , “Chattering reduction using multiphase sliding mode control,” Int. J. Control 82 (9), 17201737 (2009).

150. K. B. Lee and M. H. Han , “Lane-following method for high speed autonomous vehicles,” Int. J. Automot. Technol. 9 (5), 607613 (2008).

151. W. Li and C. G. Cassandras , “A cooperative receding horizon controller for multivehicle uncertain environments,” IEEE Trans. Autom. Control 51 (2), 242257 (2006).

152. S. R. Lindemann , I. I. Hussein and S. M. LaValle , “Real Time Feedback Control for Nonholonomic Mobile Robots with Obstacles,” Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA (Dec. 2006) pp. 24062411.

153. Y-H. Liu and S. Arimoto , “Path planning using a tangent graph for mobile robots among polygonal and curved obstacles,” Int. J. Robot. Res. 11 (4), 376382 (1992).

155. S. G. Loizou and K. J. Kyriakopoulos , “Navigation of multiple kinematically constrained robots,” IEEE Trans. Robot. 24 (1), 221231 (2008).

157. E. M. Low , I. R. Manchester and A. V. Savkin , “A biologically inspired method for vision-based docking of wheeled mobile robots,” Robot. Auton. Syst. 55 (10), 769784 (2007).

158. V. Lumelsky and A. A. Stepanov , “Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape,” Algorithmica 2 (1), 403430 (1987).

160. V. J. Lumelsky and T. Skewis , “Incorporating range sensing in the robot navigation function,” IEEE Trans. Syst. Man Cybern. 20 (5), 10581069 (1990).

161. V. J. Lumelsky and A. A. Stepanov , “Dynamic path planning for a mobile automaton with limited information on the environment,” IEEE Trans. Autom. Control 31 (11), 10581063 (1986).

164. L. Magni , D. Raimondo and F. Allgower , Nonlinear Model Predictive Control: Towards New Challenging Applications (Springer-Verlag, Berlin, Germany, 2009).

166. I. R. Manchester and A. V. Savkin , “Circular navigation missile guidance with incomplete information and uncertain autopilot model,” J. Guid. Control Dyn. 27 (6), 10761083 (2004).

167. I. R. Manchester and A. V. Savkin , “Circular navigation guidance law for precision missile/target engagement,” J. Guid. Control Dyn. 29 (2), 12871292 (2006).

171. A. Masoud , “Kinodynamic motion planning,” IEEE Robot. Autom. Mag. 17 (1), 8599 (2010).

172. A. Masoud , “A harmonic potential approach for simultaneous planning and control of a generic UAV platform,” J. Intell. Robot. Syst. 65 (1), 153173 (2012).

173. S. Mastellone , D. M. Stipanovic , C. R. Graunke , K. A. Intlekofer and M. W. Spong , “Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments,” Int. J. Robot. Res. 27 (1), 107126 (2008).

174. F. Mastrogiovanni , A. Sgorbissa and R. Zaccaria , “Robust navigation in an unknown environment with minimal sensing and representation,” IEEE Trans. Syst. Man Cybern. 39 (1), 212229 (2009).

176. A. S. Matveev , M. Hoy , J. Katupitiya and A. V. Savkin , “Nonlinear sliding mode control of an unmanned agricultural tractor in the presence of sliding and control saturation,” Robot. Auton. Syst. 61 (9), 973987 (2013).

177. A. S. Matveev , M. Hoy and A. V. Savkin , “The problem of boundary following by a unicycle-like robot with rigidly mounted sensors,” Robot. Auton. Syst. 61 (3), 312327 (2013).

178. A. S. Matveev , M. C. Hoy and A. V. Savkin , “A method for reactive navigation of nonholonomic robots in maze-like environments,” Automatica 49 (5), 12681274 (2013).

179. A. S. Matveev and A. V. Savkin , “The problem of state estimation via asynchronous communication channels with irregular transmission times,” IEEE Trans. Autom. Control 48 (4), 670676 (2003).

180. A. S. Matveev and A. V. Savkin , Estimation and Control over Communication Networks (Birkhauser, Boston, 2009).

181. A. S. Matveev , H. Teimoori and A. V. Savkin , “A method for guidance and control of an autonomous vehicle in problems of border patrolling and obstacle avoidance,” Automatica 47 (3), 515–514 (2011).

182. A. S. Matveev , H. Teimoori and A. V. Savkin , “Navigation of a unicycle-like mobile robot for environmental extremum seeking,” Automatica 47 (1), 8591 (2011).

183. A. S. Matveev , H. Teimoori and A. V. Savkin , “Range-only measurements based target following for wheeled mobile robots,” Automatica 47 (1), 177184 (2011).

184. A. S. Matveev , H. Teimoori and A. V. Savkin , “Method for tracking of environmental level sets by a unicycle-like vehicle,” Automatica 48 (9), 22522261 (2012).

185. A. S. Matveev , C. Wang and A. V. Savkin , “Real-time navigation of mobile robots in problems of border patrolling and avoiding collisions with moving and deforming obstacles,” Robot. Auton. Syst. 60 (6), 769788 (2012).

186. D. Q. Mayne , E. C. Kerrigan , E. J. van Wyk and P. Falugi , “Tube-based robust nonlinear model predictive control,” Int. J. Robust Nonlinear Control 21 (11), 13411353 (2011).

187. D. Q. Mayne and S. Rakovic , “Model predictive control of constrained piecewise affine discrete-time systems,” Int. J. Robust Nonlinear Control 13 (3–4), 261279 (2003).

189. J. Minguez and L. Montano , “The Ego-Kinodynamic Space: Collision Avoidance for Any Shape Mobile Robots with Kinematic and Dynamic Constraints,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, Las Vegas, NV, USA (2003) pp. 637643.

190. J. Minguez and L. Montano , “Nearness diagram (ND) navigation: Collision avoidance in troublesome scenarios,” IEEE Trans. Robot. Autom. 20 (1), 4559 (2004).

191. J. Minguez and L. Montano , “Sensor-based robot motion generation in unknown, dynamic and troublesome scenarios,” Robot. Auton. Syst. 52 (4), 290311 (2005).

192. J. Minguez and L. Montano , “Extending collision avoidance methods to consider the vehicle shape, kinematics, and dynamics of a mobile robot,” IEEE Trans. Robot. 25 (2), 367381 (2009).

194. L. Montesano , J. Minguez and L. Montano , “Modeling dynamic scenarios for local sensor-based motion planning,” Auton. Robots 25 (3), 231251 (2008).

198. J. Ng and T. Braunl , “Performance comparison of bug navigation algorithms,” J. Intell. Robot. Syst. 50 (1), 7384 (2007).

199. T. Nishi , M. Ando and M. Konishi , “Distributed route planning for multiple mobile robots using an augmented lagrangian decomposition and coordination technique,” IEEE Trans. Robot. 21 (6), 11911200 (2005).

200. H. Noborio , “A sufficient condition for designing a family of sensor based deadlock free planning algorithms,” Adv. Robot. 7 (5), 413433 (1993).

202. P. Ogren and N. Leonard , “A Tractable Convergent Dynamic Window Approach to Obstacle Avoidance,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, Lausanne, Switzerland (2002) pp. 595600.

203. P. Ogren and N. E. Leonard , “A convergent dynamic window approach to obstacle avoidance,” IEEE Trans. Robot. 21 (2), 188195 (2005).

204. T. Ohki , K. Nagatani and K. Yoshida , “Local path planner for mobile robot in dynamic environment based on distance time transform method,” Adv. Robot. 26 (14), 16231647 (2012).

205. C. Ordonez , E. G. Collins Jr., M. F. Selekwa and D. D. Dunlap , “The virtual wall approach to limit cycle avoidance for unmanned ground vehicles,” Robot. Auton. Syst. 56 (8), 645657 (2008).

206. E. Ostertag , “An improved path-following method for mixed h-2/h-infinity controller design,” IEEE Trans. Autom. Control 53 (8), 19671971 (2008).

208. L. Pallottino , V. G. Scordio , A. Bicchi and E. Frazzoli , “Decentralized cooperative policy for conflict resolution in multivehicle systems,” IEEE Trans. Robot. 23 (6), 11701183 (2007).

209. J. M. Park , D. W. Kim , Y. S. Yoon , H. J. Kim and K. S. Yi , “Obstacle avoidance of autonomous vehicles based on model predictive control,” Proc. Inst. Mech. Eng. 223 (12), 14991516 (2009).

210. J. Peng and S. Akella , “Coordinating multiple robots with kinodynamic constraints along specified paths,” Int. J. Robot. Res. 24 (4), 295310 (2005).

213. Zh. Qu , J. Wang and C. E. Plaisted , “A new analytical solution to mobile robot trajectory generation in the presence of moving obstacles,” IEEE Trans. Robot. 20 (6), 978993 (2004).

215. S. V. Rakovic , E. C. Kerrigan , K. I. Kouramas and D. Q. Mayne , “Invariant approximations of the minimal robust positively invariant set,” IEEE Trans. Autom. Control 50 (3), 406410 (2005).

216. A. T. Rashid , A. A. Ali , M. Frasca and L. Fortuna , “Multi-robot collision-free navigation based on reciprocal orientation,” Robot. Auton. Syst. 60 (10), 12211230 (2012).

217. J. A. Reeds and L. A. Shepp , “Optimal paths for a car that goes both forwards and backwards,” Pac. J. Math. 145 (2), 367393 (1990).

218. J. Reif and M. Sharir , “Motion planning in the presence of moving obstacles,” J. ACM 41 (4), 764790 (1994).

220. J. Ren , K. A. McIsaac and R. V. Patel , “Modified Newton's method applied to potential field-based navigation for nonholonomic robots in dynamic environments,” Robotica 26 (1), 117127 (2008).

221. S. A. Reveliotis and E. Roszkowska , “Conflict resolution in free-ranging multivehicle systems: A resource allocation paradigm,” IEEE Trans. Robot. 27 (2), 283296 (2011).

223. A. Richards and J. P. How , “Robust variable horizon model predictive control for vehicle maneuvering,” Int. J. Robust Nonlinear Control 16 (7), 333351 (2006).

224. A. Richards and J. P. How , “Robust distributed model predictive control,” Int. J. Control 80 (9), 15171531 (2007).

226. G. Roussos , D. V. Dimarogonas and K. J. Kyriakopoulos , “3d navigation and collision avoidance for nonholonomic aircraft-like vehicles,” Int. J. Adapt. Control Signal Process. 24 (10), 900920 (2010).

228. M. Rubagotti , D. M. Raimondo , A. Ferrara and L. Magni , “Robust model predictive control with integral sliding mode in continuous-time sampled-data nonlinear systems,” IEEE Trans. Autom. Control 56 (3), 556570 (2010).

229. G. M. Saggiani and B. Teodorani , “Rotary wing UAV potential applications: An analytical study through a matrix method,” Aircr. Eng. Aerosp. Technol., Int. J. 76, 614 (2004).

230. C. Samson , “Control of chained systems: Application to path-following and time-varying point stabilization of mobile robots,” IEEE Trans. Autom. Control 40, 6477 (1995).

233. B. M. Sathyaraj , L. C. Jain , A. Finn and S. Drake , “Multiple UAVs path planning algorithms: A comparative study,” Fuzzy Optim. Decis. Mak. 7 (3), 257267 (2008).

234. A. V. Savkin , “Coordinated collective motion of groups of autonomous mobile robots: Analysis of Vicsek's model,” IEEE Trans. Autom. Control 49 (6), 981983 (2004).

235. A. V. Savkin , “Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control,” Automatica 42 (1), 5162 (2006).

236. A. V. Savkin and T. M. Cheng , “Detectability and output feedback stabilizability of nonlinear networked control systems,” IEEE Trans. Autom. Control 52 (4), 730735 (2007).

238. A. V. Savkin , F. Javed and A. S. Matveev , “Optimal distributed blanket coverage self-deployment of mobile wireless sensor networks,” IEEE Commun. Lett. 16 (6), 949951 (2012).

239. A. V. Savkin and H. Teimoori , “Bearings-only guidance of a unicycle-like vehicle following a moving target with a smaller minimum turning radius,” IEEE Trans. Autom. Control 55 (10), 23902395 (2010).

242. E. Scholte and M. E. Campbell , “Robust nonlinear model predictive control with partial state information,” IEEE Trans. Control Syst. Technol. 16 (4), 636651 (2008).

243. P. O. Scokaert and D. Q. Mayne , “Min–max feedback model predictive control for constrained linear systems,” IEEE Trans. Autom. Control 43 (8), 11361142 (1998).

245. R. Sharma , J. Saunders and R. Beard , “Reactive path planning for micro air vehicles using bearing-only measurements,” J. Intell. Robot. Syst. 65 (1), 409416 (2012).

246. C. Shi , Y. Wang and J. Yang , “A local obstacle avoidance method for mobile robots in partially known environment,” Robot. Auton. Syst. 58 (5), 425434 (2010).

247. Z. Shiller , O. Gal and E. Rimon , “Safe Navigation in Dynamic Environments,” In: Robot Design, Dynamics and Control (CISM Courses and Lectures) ( W. Schiehlen and V. Parenti-Castelli , eds.) Vol. 524 (Springer, Vienna, 2010) pp. 225232.

248. D. H. Shim , H. Chung and S. S. Sastry , “Conflict-free navigation in unknown urban environments,” IEEE Robot. Autom. Mag. 13 (3), 2733 (2006).

250. J. Shin and H. J. Kim , “Nonlinear model predictive formation flight,” IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 39 (5), 11161125 (2009).

251. A. M. Shkel and V. J. Lumelsky , “Incorporating body dynamics into sensor-based motion planning: The maximum turn strategy,” IEEE Trans. Robot. Autom. 13 (6), 873880 (1997).

252. D. A. Shoenwald , “AUVs: In space, air, water, and on the ground,” IEEE Control Syst. Mag. 20 (6), 1519 (2000).

253. R. Simmons , “The Curvature–Velocity Method for Local Obstacle Avoidance,” IEEE International Conference on Robotics and Automation, Vol. 4, Minneapolis, MI, USA (Nov. 1996) pp. 33753382.

254. E. A. Sisbot , L. F. Marin-Urias , R. Alami and T. Simeon , “A human aware mobile robot motion planner,” IEEE Trans. Robot. 23 (5), 874883 (2007).

256. I. Skrjanc and G. Klancar , “Optimal cooperative collision avoidance between multiple robots based on Bernstein–Bezier curves,” Robot. Auton. Syst. 58 (1), 19 (2010).

258. J. Snape , J. van den Berg , S. J. Guy and D. Manocha , “The hybrid reciprocal velocity obstacle,” IEEE Trans. Robot. 27 (4), 696706 (2011).

260. M. V. Srinivasan , S. W. Zhang , J. S. Chahl , E. Barth and S. Venkatesh , “How honeybees make grazing landings on flat surfaces,” Biol. Cybern. 83 (3), 171183 (2000).

262. C. Stachniss and W. Burgard , “An Integrated Approach to Goal-Directed Obstacle Avoidance Under Dynamic Constraints for Dynamic Environments,” Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1, Lausanne, Switzerland (2002) pp. 508513.

263. D. M. Stipanovic , P. F. Hokayem , M. W. Spong and D. D. Siljak , “Cooperative avoidance control for multiagent systems,” J. Dyn. Syst. Meas. Control 129 (5), 699707 (2007).

265. S. Suri , E. Vicari and P. Widmayer , “Simple robots with minimal sensing: From local visibility to global geometry,” Int. J. Robot. Res. 27 (9), 10551067 (2008).

266. S. Susca , F. Bullo and S. Martinez , “Monitoring environmental boundaries with a robotic sensor network,” IEEE Trans. Control Syst. Technol. 16 (2), 288296 (2008).

267. A. Tahirovic and G. Magnani , “PB/MPC Navigation Planner,” In: Passivity-Based Model Predictive Control for Mobile Vehicle Motion Planning (Springer, London, 2013) pp. 1124.

268. H. G. Tanner and A. Boddu , “Multiagent navigation functions revisited,” IEEE Trans. Robot. 28 (6), 13461359 (2012).

269. T. Tarnopolskaya , N. Fulton and H. Maurer , “Synthesis of optimal bang-bang control for cooperative collision avoidance for aircraft (ships) with unequal linear speeds,” J. Optim. Theory Appl. 155 (1), 115144 (2012).

271. H. Teimoori and A. V. Savkin , “Equiangular navigation and guidance of a wheeled mobile robot based on range-only measurements,” Robot. Auton. Syst. 58 (2), 203215 (2010).

272. S. Thrun , “Learning occupancy grid maps with forward sensor models,” Auton. Robots 15 (2), 111127 (2003).

274. B. Tovar , R. Murrieta-Cid and S. M. LaValle , “Distance-optimal navigation in an unknown environment without sensing distances,” IEEE Trans. Robot. 23 (3), 506518 (2007).

276. C. Trevai , J. Ota and T. Arai , “Multiple mobile robot surveillance in unknown environments,” Adv. Robot. 21 (7), 729749 (2007).

280. V. I. Utkin , Sliding Modes in Control Optimization (Springer–Verlag, Berlin, 1992).

282. L. Valbuena and H. Tanner , “Hybrid potential field based control of differential drive mobile robots,” J. Intell. Robot. Syst. 68 (3–4), 307322 (2012).

284. J. van den Berg and M. Overmars , “Planning time-minimal safe paths amidst unpredictably moving obstacles,” Int. J. Robot. Res. 27 (11–12), 12741294 (2008).

287. A. C. Victorino , P. Rives and J.-J. Borrelly , “Safe navigation for indoor mobile robots. Part I: A sensor-based navigation framework,” Int. J. Robot. Res. 22 (12), 10051118 (2003).

290. A. V. Savkin and H. Teimoori , “Decentralized navigation of groups of wheeled mobile robots with limited communication,” IEEE Trans. Robot. 26 (10), 10991104 (2010).

297. A. Widyotriatmo and K. Hong , “Navigation function-based control of multiple wheeled vehicles,” IEEE Trans. Ind. Electron. 58 (5), 18961906 (2011).

298. A. Wu and J. How , “Guaranteed infinite horizon avoidance of unpredictable, dynamically constrained obstacles,” Auton. Robots 32 (3), 227242 (2012).

299. J. M. Yang and J. H. Kim , “Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots,” IEEE Trans. Robot. Autom. 15 (3), 578587 (1999).

300. K. Yang , S. Gan and S. Sukkarieh , “An efficient path planning and control algorithm for RUAV's in unknown and cluttered environments,” J. Intell. Robot. Syst. 57 (1), 101122 (2010).

301. X. Yang , L. Alvarez and T. Bruggemann , “A 3D collision avoidance strategy for UAVs in a non-cooperative environment,” J. Intell. Robot. Syst. 70 (1–4), 315327 (2012).

302. T. Yata , L. Kleeman and S. Yuta , “Wall Following Using Angle Information Measured by a Single Ultrasonic Transducer,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2, Leuven, Belgium (1998) pp. 15901596.

303. Y. Yoon , J. Shin , H. J. Kim , Y. Park and S. Sastry , “Model-predictive active steering and obstacle avoidance for autonomous ground vehicles,” Control Eng. Pract. 17 (7), 741750 (2009).

305. Ch. Zhang , D. Arnold , N. Ghods , A. Siranosian and M. Krstic , “Source seeking with non–holonomic unicycle without position measurement and with tuning of forward velocity,” Syst. Control Lett. 56 (3), 245252 (2007).

306. F. Zhang , D. M. Fratantoni , D. A. Paley , J. M. Lund and N. E. Leonard , “Control of coordinated patterns for ocean sampling,” Int. J. Control 80 (7), 11861199 (2007).

308. F. Zhang and N. E. Leonard , “Cooperative control and filtering for cooperative exploration,” IEEE Trans. Autom. Control 55 (3), 650663 (2010).

309. C. Zheng , L. Li , F. Xu , F. Sun and M. Ding , “Evolutionary route planner for unmanned air vehicles,” IEEE Trans. Robot. 21 (4), 609620 (2005).

313. Y. Zhu , T. Zhang , J. Song and X. Li , “A new hybrid navigation algorithm for mobile robots in environments with incomplete knowledge,” Knowl.–Based Syst. 27, 302313 (2012).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1070 *
Loading metrics...

Abstract views

Total abstract views: 684 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th August 2017. This data will be updated every 24 hours.