Hostname: page-component-5b777bbd6c-j65dx Total loading time: 0 Render date: 2025-06-18T05:06:19.650Z Has data issue: false hasContentIssue false

An omnidirectional mecanum wheel automated guided vehicle control using hybrid modified A* algorithm

Published online by Cambridge University Press:  06 December 2024

Ankur Bhargava*
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, India
Mohammad Suhaib
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, India
Ajay K. S. Singholi
Affiliation:
University School of Automation & Robotics, Guru Gobind Singh Indraprastha University, New Delhi, India
*
Corresponding author: Ankur Bhargava; Email: ankurgsb21@gmail.com

Abstract

This paper presents Hybrid Modified A* (HMA*) algorithm which is used to control an omnidirectional mecanum wheel automated guided vehicle (AGV). HMA* employs Modified A* and PSO to determine the best AGV path. The HMA* overcomes the A* technique’s drawbacks, including a large number of nodes, imprecise trajectories, long calculation times, and expensive path initialization. Repetitive point removal refines Modified A*’s path to locate more important nodes. Real-time hardware control experiments and extensive simulations using Matlab software prove the HMA* technique works well. To evaluate the practicability and efficiency of HMA* in route planning and control for AGVs, various algorithms are introduced like A*, Probabilistic Roadmap (PRM), Rapidly-exploring Random Tree (RRT), and bidirectional RRT (Bi-RRT). Simulations and real-time testing show that HMA* path planning algorithm reduces AGV running time and path length compared to the other algorithms. The HMA* algorithm shows promising results, providing an enhancement and outperforming A*, PRM, RRT, and Bi-RRT in the average length of the path by 12.08%, 10.26%, 7.82%, and 4.69%, and in average motion time by 21.88%, 14.84%, 12.62%, and 8.23%, respectively. With an average deviation of 4.34% in path length and 3% in motion time between simulation and experiments, HMA* closely approximates real-world conditions. Thus, the proposed HMA* algorithm is ideal for omnidirectional mecanum wheel AGV’s static as well as dynamic movements, making it a reliable and efficient alternative for sophisticated AGV control systems.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Yao, Z., Zhang, W., Shi, Y., Li, M., Liang, Z., Li, F. and Huang, Q., “RimJump: Edge-based shortest path planning for a 2D map,” Robotica 37(4), 641655 (2019). doi: 10.1017/S0263574718001236.CrossRefGoogle Scholar
Tanveer, M. H., Recchiuto, C. T. and Sgorbissa, A., “Analysis of path following and obstacle avoidance for multiple wheeled robots in a shared workspace,” Robotica 37(1), 80108 (2019). doi: 10.1017/S0263574718000875.CrossRefGoogle Scholar
Sharma, M. and Voruganti, H. K., “Multi-objective optimization approach for coverage path planning of mobile robot,” Robotica 42(7), 125 (2024). doi: 10.1017/S0263574724000377.CrossRefGoogle Scholar
Khan, H., Khatoon, S., Gaur, P., Abbas, M., Saleel, C. A. and Khan, S. A., “Speed control of wheeled mobile robot by nature-inspired social spider algorithm-based PID controller,” Processes 11(4), 1202 (2023). doi: 10.3390/pr11041202.CrossRefGoogle Scholar
Wahhab, O. A. R. A. and A., S., “Al-Araji “Path planning and control strategy design for mobile robot based on hybrid swarm optimization algorithm,” Int J Intell Eng Syst 14(3), 565579 (2021). doi: 10.22266/ijies2021.0630.48.Google Scholar
Liu, S., Liu, S. and Xiao, H., “Improved gray wolf optimization algorithm integrating A* algorithm for path planning of mobile charging robots,” Robotica 42(2), 536559 (2024). doi: 10.1017/S0263574723001625.CrossRefGoogle Scholar
Kanoon, Z. E., Al-Araji, A. S. and Abdullah, M. N., “An intelligent path planning algorithm and control strategy design for multi-mobile robots based on a modified elman recurrent neural network,” Int J Intell Eng Syst 15(5), 400415 (2022). doi: 10.2266/ijies2022.1031.35.Google Scholar
El Aziz, M. A., Ewees, A. A. and Hassanien, A. E., “Hybrid Swarms Optimization Based Image Segmentation,” In: Hybrid Soft Computing for Image Segmentation, (Bhattacharyya, S., Dutta, P., De, S. and Klepac, G.eds.) (Springer, Cham, 2016). doi: 10.1007/978-3-319-47223-2_1.Google Scholar
Al-Araji, A. S., “Development of kinematic path-tracking controller design for real mobile robot via back-stepping slice genetic robust algorithm technique,” Arab J Sci Eng 39(12), 88258835 (2014). doi: 10.1007/s13369-014-1461-4.CrossRefGoogle Scholar
Rasheed, A. A. A., Al-Araji, A. S. and Abdullah, M. N., “Static and dynamic path planning algorithms design for a wheeled mobile robot based on a hybrid technique,” Int J Intell Eng Syst 15(4), 167181 (2022). doi: 10.22266/ijies2022.0831.16.Google Scholar
Kim, C., Suh, J. and Han, J.-H., “Development of a hybrid path planning algorithm and a bio-inspired control for an omni-wheel mobile robot,” Sensors 20(15), 4258 (2020). doi: 10.3390/s20154258.CrossRefGoogle Scholar
S., J. F. and R., S., “Self-adaptive learning particle swarm optimization-based path planning of mobile robot using 2D Lidar environment,” Robotica 42(4), 9771000 (2024). doi: 10.1017/S0263574723001819.CrossRefGoogle Scholar
Tolossa, T. D., Gunasekaran, M., Halder, K., Verma, H. K., Parswal, S. S., Jorwal, N., Maria Joseph, F. O. and Hote, Y. V., “Trajectory tracking control of a mobile robot using fuzzy logic controller with optimal parameters,” Robotica 124 (2024). doi: 10.1017/S0263574724001140.Google Scholar
Yuan, C., Chang, Y., Song, Y., Lin, S. and Jing, F., “Design and analysis of a negative pressure wall-climbing robot with an omnidirectional characteristic for cylindrical wall,” Robotica 42(7), 22262242 (2024). doi: 10.1017/S0263574724000493.CrossRefGoogle Scholar
Nfaileh, N., Alipour, K., Tarvirdizadeh, B. and Hadi, A., “Formation control of multiple wheeled mobile robots based on model predictive control,” Robotica 40(9), 31783213 (2022). doi: 10.1017/S0263574722000121.CrossRefGoogle Scholar
Mao, N., Chen, J., Spyrakos-Papastavridis, E. and Dai, J. S., “Dynamic modeling of wheeled biped robot and controller design for reducing chassis tilt angle,” Robotica, 129 (2024). doi: 10.1017/S0263574724001061.Google Scholar
Guo, J., Huo, X., Guo, S. and Xu, J., “A Path Planning Method for the Spherical Amphibious Robot Based on Improved A-star Algorithm,” In: 2021 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan (2021) pp. 12741279. doi: 10.1109/ICMA52036.2021.9512805.CrossRefGoogle Scholar
Wei, K., Gao, Y., Zhang, W. and Lin, S., “A Modified Dijkstra’s Algorithm for Solving the Problem of Finding the Maximum Load Path,” In: 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT), Kahului, HI, USA (2019) pp. 1013. doi: 10.1109/INFOCT.2019.8711024.CrossRefGoogle Scholar
Guo, J., Liu, L., Liu, Q. and Qu, Y., “An Improvement of D* Algorithm for Mobile Robot Path Planning in Partial Unknown Environment,” In: 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China (2009) pp. 394397. doi: 10.1109/ICICTA.2009.561.CrossRefGoogle Scholar
Karur, K., Sharma, N., Dharmatti, C. and Siegel, J. E., “A survey of path planning algorithms for mobile robots,” Vehicles 3(3), 448468 (2021). doi: 10.3390/vehicles3030027.CrossRefGoogle Scholar
Wang, X., Wei, J., Zhou, X., Xia, Z. and Gu, X., “AEB-RRT*: An adaptive extension bidirectional RRT* algorithm,” Auton Robot 46(6), 685704 (2022). doi: 10.1007/s10514-022-10044-x.CrossRefGoogle Scholar
Li, Q., Xu, Y., Bu, S. and Yang, J., “Smart vehicle path planning based on modified PRM algorithm,” Sensors 22(17), 6581 (2022). doi: 10.3390/s22176581.CrossRefGoogle ScholarPubMed
He, S., Xing, T. and Ma, J., “Research on Solid Rate Filtering Technique based on Inverse Distance Weighted Interpolation of Navigation Radar,” In: 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China (2022) pp. 838841. doi: 10.1109/ITAIC54216.2022.9836465.CrossRefGoogle Scholar
Gopika, M. P., Bindu, G. R., Ponmalar, M., Usha, K. and Haridas, T. R., “Smooth PRM Implementation for Autonomous Ground Vehicle,” In: 2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS), Bangalore, India (2022) pp. 15. doi: 10.1109/ICDDS56399.2022.10037275.CrossRefGoogle Scholar
Yang, N., Han, L., Xiang, C., Liu, H., Ma, T. and Ruan, S., “Real-time energy management for a hybrid electric vehicle based on heuristic search,” IEEE Trans Veh Technol 71(12), 1263512647 (2022). doi: 10.1109/TVT.2022.3195769.CrossRefGoogle Scholar
Eshtehardian, S. A. and Khodaygan, S., “A continuous RRT*-based path planning method for non-holonomic mobile robots using B-spline curves,” J Ambient Intell Human Comput 14(7), 86938702 (2023). doi: 10.1007/s12652-021-03625-8.CrossRefGoogle Scholar
Li, C., Huang, X., Ding, J., Song, K. and Lu, S., “Global path planning based on a bidirectional alternating search A* algorithm for mobile robots,” Comput Ind Eng 168, 108123 (2022). doi: 10.1016/j.cie.2022.108123.CrossRefGoogle Scholar
Katiyar, S. and Dutta, A., “Comparative analysis on path planning of ATR using RRT*, PSO, and modified APF in CG-space,” Proc Inst Mech Eng Pt C: J Mech Eng Sci 236(10), 56635677 (2022). doi: 10.1177/09544062211062435.CrossRefGoogle Scholar
Zhang, L., Shi, X., Yi, Y., Tang, L., Peng, J. and Zou, J., “Mobile robot path planning algorithm based on RRT_Connect,” Electronics 12(11), 2456 (2023). doi: 10.3390/electronics12112456.CrossRefGoogle Scholar
Wang, J., Chi, W., Shao, M. and Meng, M. Q.-H., “Finding a high-quality initial solution for the RRTs algorithms in 2D environments,” Robotica 37(10), 16771694 (2019). doi: 10.1017/S0263574719000195.CrossRefGoogle Scholar
Umar, U. A., Ariffin, M. K. A., Ismail, N. and Tang, S. H., “Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment,” Int J Adv Manuf Technol 81(9-12), 21232141 (2015). doi: 10.1007/s00170-015-7329-2.CrossRefGoogle Scholar
Wang, T., Dong, R., Zhang, R. and Qin, D., “Research on stability design of differential drive fork-type AGV based on PID control,” Electronics 9(7), 1072 (2020). doi: 10.3390/electronics9071072.CrossRefGoogle Scholar
Xiao, J., Yu, X., Sun, K., Zhou, Z. and Zhou, G., “Multiobjective path optimization of an indoor AGV based on an improved ACO-DWA[J],” Math Biosci Eng 19(12), 1253212557 (2022). doi: 10.3934/mbe.2022585.CrossRefGoogle Scholar
Cao, X. and Zhu, M., “Research on global optimization method for multiple AGV collision avoidance in hybrid path,” Opti Control Appl Meth 42(4), 10641080 (2021). doi: 10.1002/oca.2716.CrossRefGoogle Scholar
Ruiz Molledo, V. and Sierra Garcia, J. E., “Simulation tool for hybrid AGVs based on IEC-61131,” IEEE Lat Am Trans 20(2), 317325 (2022). doi: 10.1109/TLA.2022.9661472.CrossRefGoogle Scholar
Lin, R., “Research into the automatic guidance system for AGVs used for logistics based on millimeter wave radar imaging,” Wire Commun Mobile Comput 2022, 8 (2022). doi: 10.1155/2022/3104017.Google Scholar
Gad, A. G., “Particle swarm optimization algorithm and its applications: A systematic review,” Arch Computat Methods Eng 29(5), 25312561 (2022). doi: 10.1007/s11831-021-09694-4.CrossRefGoogle Scholar
Qiao, Y., Fu, Y. and Yuan, M., “Communication-control co-design in wireless networks: A cloud control AGV example,” IEEE Internet Things J 10(3), 23462359 (2023). doi: 10.1109/JIOT.2022.3211766.CrossRefGoogle Scholar
Durst, P., Jia, X. and Li, L., “Multi-Objective Optimization of AGV Real-Time Scheduling Based on Deep Reinforcement Learning,” In: 42nd Chinese Control Conference (CCC), Tianjin, China (2023) pp. 55355540. doi: 10.23919/CCC58697.2023.10240797.CrossRefGoogle Scholar
Yuan, X., Yuan, X. and Wang, X., “Path planning for mobile robot based on improved bat algorithm,” Sensors 21(13), 4389 (2021). doi: 10.3390/s21134389.CrossRefGoogle ScholarPubMed
Si, Q. and Li, C., “Indoor robot path planning using an improved whale optimization algorithm,” Sensors 23(8), 3988 (2023). doi: 10.3390/s23083988.CrossRefGoogle ScholarPubMed
Jiang, M., Yuan, D. and Cheng, Y., “Improved Artificial Fish Swarm Algorithm,” In: 2009 Fifth International Conference on Natural Computation, Tianjian, China (2009) pp. 281285. doi: 10.1109/ICNC.2009.343.CrossRefGoogle Scholar
Dai, W.-M. and Kuh, E. S., “Simultaneous floor planning and global routing for hierarchical building-block layout,” IEEE Tran Comput-Aided Des Integr Circuits and Syst 6(5), 828837 (1987). doi: 10.1109/TCAD.1987.1270326.Google Scholar
Korayem, M. H., Nosoudi, S., Khazaei Far, S. and Hoshiar, A. K., “Hybrid IPSO-automata algorithm for path planning of micro-nanoparticles through random environmental obstacles, based on AFM,” J Mech Sci Technol 32(2), 805810 (2018). doi: 10.1007/s12206-018-0129-x.CrossRefGoogle Scholar
Bhargava, A., Suhaib, M. and Singholi, A. S., “A review of recent advances, techniques, and control algorithms for automated guided vehicle systems,” J Braz Soc Mech Sci Eng 46(7), 419 (2024). doi: 10.1007/s40430-024-04896-w.CrossRefGoogle Scholar
Abi, S., Benhala, B. and Bouyghf, H., “A Hybrid DE-ACO Algorithm for the Global Optimization,” In: 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco (2020) pp. 16. doi: 10.1109/ICECOCS50124.2020.9314533.CrossRefGoogle Scholar
Nie, Z. and Zhao, H., “Research on Robot Path Planning Based on Dijkstra and Ant Colony Optimization,” In: 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Shanghai, China (2019) pp. 222226. doi: 10.1109/ICIIBMS46890.2019.8991502.CrossRefGoogle Scholar
Shial, G., Sahoo, S. and Panigrahi, S., “An enhanced GWO algorithm with improved explorative search capability for global optimization and data clustering,” Appl Artif Intell 37(1), 1 (2023). doi: 10.1080/08839514.2023.2166232.CrossRefGoogle Scholar
Shami, T. M., El-Saleh, A. A., Alswaitti, M., Al-Tashi, Q., Summakieh, M. A. and Mirjalili, S., “Particle swarm optimization: A comprehensive survey,” IEEE Access 10, 1003110061 (2022). doi: 10.1109/ACCESS.2022.3142859.CrossRefGoogle Scholar
Shami, T. M., El-Saleh, A. A. and Kareem, A. M., “On the Detection Performance of Cooperative Spectrum Sensing using Particle Swarm Optimization Algorithms,” In: 2014 IEEE 2nd International Symposium on Telecommunication Technologies (ISTT), Langkawi, Malaysia (2014) pp. 110114. doi: 10.1109/ISTT.2014.7238187.CrossRefGoogle Scholar
Chen, X., Zhao, Y., Fan, J. and Liu, H., “Three-Dimensional UAV Track Planning based on the GB-PQ-RRT* Algorithm,” In: 42nd Chinese Control Conference (CCC), Tianjin, China (2023) pp. 46394644. doi: 10.23919/CCC58697.2023.10240961.CrossRefGoogle Scholar
Guan, W. and Wang, K., “Autonomous collision avoidance of unmanned surface vehicles based on improved A-star and dynamic window approach algorithms,” IEEE Intel Transp Syst Magaz 15(3), 3650 (2023). doi: 10.1109/MITS.2022.3229109.CrossRefGoogle Scholar
Cao, B., Yang, Z., Yu, L. and Zhang, Y., “Research on the Star Algorithm for Safe Path Planning,” In: 2023 IEEE International Conference on Control, Jilin, China (2023) pp. 105109. doi: 10.1109/ICCECT57938.2023.10141167.CrossRefGoogle Scholar
Bhargava, A., Singholi, A. S. and Suhaib, M., “A Study on Design and Control of Omni-Directional Mecanum Wheels based AGV System,” In: 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India (2023) pp. 16. doi: 10.1109/ICCCNT56998.2023.10306665.CrossRefGoogle Scholar
Li, S., Gu, J., Li, Z., Li, S., Guo, B., Gao, S., Zhao, F., Yang, Y., Li, G. and Dong, L., “A visual SLAM-based lightweight multi-modal semantic framework for an intelligent substation robot,” Robotica 42(7), 115 (2024). doi: 10.1017/S0263574724000511.CrossRefGoogle Scholar
Chen, Z., Zhang, X., Wang, L. and Xia, Y., “A Fast Path Planning Method Based on RRT Star Algorithm,” In: 2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China (2023) pp. 258262. doi: 10.1109/ICCECE58074.2023.10135365.CrossRefGoogle Scholar
Zhang, S., Li, A., Ren, J. and Ren, R., “Kinematics inverse solution of assembly robot based on improved particle swarm optimization,” Robotica 42(3), 833845 (2024). doi: 10.1017/S0263574723001789.CrossRefGoogle Scholar
Pak, Y.-J., Kong, Y.-S. and Ri, J.-S., “Robust PID optimal tuning of a delta parallel robot based on a hybrid optimization algorithm of particle swarm optimization and differential evolution,” Robotica 41(4), 11591178 (2023). doi: 10.1017/S0263574722001606.CrossRefGoogle Scholar
Liu, Y., Wang, X., Zhang, Y. and Liu, L., “An integrated flow shop scheduling problem of preventive maintenance and degradation with an improved NSGA-II Algorithm,” IEEE Access 11, 35253544 (2023). doi: 10.1109/ACCESS.2023.3234428.CrossRefGoogle Scholar
Liu, X., Feng, R., Zhou, S. and Yang, Y., “A Novel PSO-SGD with Momentum Algorithm for Medical Image Classification,” In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA (2021) pp. 34083413. doi: 10.1109/BIBM52615.2021.9669876.CrossRefGoogle Scholar
Jingjing, H., Xun, L., Wenzhe, M., Xin, Y. and Dong, Y.. Path Planning Method for Mobile Robot Based on Multiple Improved PSO. In: 2021 40th Chinese Control Conference (CCC), Shanghai, China (2021) pp. 14851489, 10.23919/CCC52363.2021.9550590 Google Scholar
Demir, M. H. and Demirok, M., “Designs of particle-swarm-optimization-based intelligent PID controllers and DC/DC buck converters for PEM fuel-cell-powered four-wheeled automated guided vehicle,” Appl Sci 13(5), 2919 (2023). doi: 10.3390/app13052919.CrossRefGoogle Scholar
Ding, M., Zheng, X., Liu, L., Guo, J. and Guo, Y., “Collision-free path planning for cable-driven continuum robot based on improved artificial potential field,” Robotica 42(5), 13501367 (2024). doi: 10.1017/S026357472400016X.CrossRefGoogle Scholar
Khan, H., Khatoon, S. and Gaur, P., “Stabilization of wheeled mobile robot by social spider algorithm based PID controller,” Int J Inf Tecnol 16(3), 14371447 (2023). doi: 10.1007/s41870-023-01438-w.CrossRefGoogle Scholar
Bhargava, A., Singholi, A. S. and Suhaib, M., “Design and Development of a Visual - SLAM based Automated Guided Vehicle,” In: 2023 IEEE Fifth International Conference on Advances in Electronics, Computers and Communications (ICAECC), Bengaluru, India (2023) pp. 17. doi: 10.1109/ICAECC59324.2023.10560331.CrossRefGoogle Scholar
Sandoval-Castro, X. Y., Muñoz-Gonzalez, S., Garcia-Murillo, M. A., Ferrusca-Monroy, P. D. and Ruiz-Torres, M. F., “Four-bar linkage reconfigurable robotic wheel: Design, kinematic analysis, and experimental validation for adaptive size modification,” Robotica 42(6), 115 (2024). doi: 10.1017/S026357472400078X.CrossRefGoogle Scholar
Chen, W., Cheng, H., Zhang, W., Wu, H., Liu, X. and Men, Y., “Modeling and invariably horizontal control for the parallel mobile rescue robot based on PSO-CPG algorithm,” Robotica 41(11), 35013523 (2023). doi: 10.1017/S0263574723001133.CrossRefGoogle Scholar
Wang, B., Li, P., Yang, C., Hu, X. and Zhao, Y., “Robotica: Decoupled elastostatic stiffness modeling of hybrid robots,” Robotica 42(7), 119 (2024). doi: 10.1017/S0263574724000675.CrossRefGoogle Scholar
Weidong, Z., Xianlin, H., Xiao-Zhi, G. and Hongjun, P., “Multi-Objective Longitudinal Trajectory Optimization for Hypersonic Reentry Glide Vehicle based on PSO Algorithm,” In: 34th Chinese Control Conference (CCC), Hangzhou, China (2015) pp. 23502356. doi: 10.1109/ChiCC.2015.7260001.CrossRefGoogle Scholar
Raptis, I. A., Hansen, C. and Sinclair, M. A., “Design, modeling, and constraint-compliant control of an autonomous morphing surface for omnidirectional object conveyance,” Robotica 40(2), 213233 (2022). doi: 10.1017/S0263574721000473.CrossRefGoogle Scholar
Liu, X., Wang, L. and Yang, Y., “Model-free adaptive robust control based on TDE for robot with disturbance and input saturation,” Robotica 41(11), 34263445 (2023). doi: 10.1017/S0263574723001078.CrossRefGoogle Scholar
Gao, G., Li, D., Liu, K., Ge, Y. and Song, C., “A study on path-planning algorithm for a multi-section continuum robot in confined multi-obstacle environments,” Robotica 124 (2024). doi: 10.1017/S0263574724001383.Google Scholar
Liu, B., Jiang, G., Zhao, F. and Mei, X., “Collision-free motion generation based on stochastic optimization and composite signed distance field networks of articulated robot,” IEEE Robot Autom Lett 8(11), 70827089 (2023). doi: 10.1109/LRA.2023.3311357.CrossRefGoogle Scholar
Nguyen, T. D., “Kinematic Model and Stable Control Law Proposed for Four Mecanum Wheeled Mobile Robot Platform Based on Lyapunov Stability Criterion,” In: 2023 International Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi Minh, Vietnam (2023) pp. 144149. doi: 10.1109/ISEE59483.2023.10299844.CrossRefGoogle Scholar