Hostname: page-component-cb9f654ff-9knnw Total loading time: 0 Render date: 2025-08-20T02:44:09.737Z Has data issue: false hasContentIssue false

Arachne system: an accessible miniaturized mobile Multi-robot platform

Published online by Cambridge University Press:  08 July 2025

Ioannis Raptis*
Affiliation:
Department of Electrical and Computer Engineering, North Carolina A&T State University, Greensboro, NC, USA
Benjamin Sullivan
Affiliation:
Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowel, MA, USA
*
Corresponding author: Ioannis Raptis; Email: iraptis@ncat.edu

Abstract

This paper introduces the Arachne System, a scalable, cost-effective mobile microrobot swarm platform designed for educational and research applications. It details the design, functionalities, and potential of the Arachne Bots, emphasizing their accessibility to users with minimal robotics expertise. By providing a comprehensive overview of the system’s hardware, sensory capabilities, and control algorithms, the paper demonstrates the platform’s capacity to democratize and reduce entry barriers in mobile robotic swarms research, fostering innovation and educational opportunities in the field. Extensive experimental validation of the system showcases its broad range of capabilities and effectiveness in real-world implementation.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

An introductory overview video tutorial of the Arachne System is available at https://www.youtube.com/watch?v=2tZHDulS5Q8. The complete source code and documentation for the Arachne System are publicly available in our open-source GitHub repository at https://github.com/UMLARSL/Arachne-Bots.

References

Parker, L. E.. Distributed Intelligence: Overview of the Field and its Application in Multi-robot Systems. In: AAAI Fall Symposium: Regarding the Intelligence in Distributed Intelligent Systems (2007) pp. 16.Google Scholar
Navarro, Iñaki and Matía, F., “An introduction to swarm robotics,” ISRN Robot. 2013, 110 (2013).CrossRefGoogle Scholar
Brooks, R. A., “Elephants don’t play chess,” Robot. Auton. Syst. 6(1-2), 315 (1990).CrossRefGoogle Scholar
Flynn, A. M., Brooks, R. A., Wells, W. M. and Barrett, D. S.. The World’s Largest One Cubic Inch Robot. In: IEEE Micro Electro Mechanical Systems Proceedings, `An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots’ (IEEE, 1989) pp. 98101.Google Scholar
Flynn, A. M., Brooks, R. A., Wells, W. M. III and Barrett, D. S., “Intelligence for miniature robots,” Sens. Actuator 20(1-2), 187196 (1989).CrossRefGoogle Scholar
Flynn, A. M., Brooks, R. A., Wells, W. M. III and Barrett, D. S., Squirt: The prototypical mobile robot for autonomous graduate students (1989).Google Scholar
Soares, J. M., Navarro, I. and Martinoli, A.. The Khepera IV Mobile Robot: Performance Evaluation, Sensory Data and Software Coolbox. In: Robot 2015: 2nd Iberian Robotics Conference: Advances in Robotics, 416 (Springer, 2016) pp. 767781.CrossRefGoogle Scholar
Gindling, J., Ioannidou, A., Loh, J., Lokkebo, O. and Repenning, A.. Legosheets: a Rule-Based Programming, Simulation and Manipulation Environment for the Lego Programmable Brick. In: Proceedings of Symposium on Visual Languages (IEEE, 1995) pp. 172179.CrossRefGoogle Scholar
Klassner, F. and Anderson, S. D., “Lego mindstorms: Not just for k-12 anymore,” IEEE Robot. Autom. Mag. 10(2), 1218 (2003).CrossRefGoogle Scholar
Grabowski, R., Navarro-Serment, L. E., Paredis, C. J. J. and Khosla, P. K., “Heterogeneous teams of modular robots for mapping and exploration,” Auton. Robot. 8(3), 293308 (2000).CrossRefGoogle Scholar
Navarro-Serment, L. E., Grabowski, R., Paredis, C. J. J. and Khosla, P. K., “Millibots,” IEEE Robot. Autom. Mag. 9(4), 3140 (2002).CrossRefGoogle Scholar
Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A. and Sukhatme, G. S.. Robomote: Enabling Mobility in Sensor Networks. In: Proceedings of the 4th International symposium on Information Processing in Sensor Networks (2005) p. 55.Google Scholar
Sibley, G. T., Rahimi, M. H. and Sukhatme, G. S., “Robomote: A Tiny Mobile Robot Platform for Large-Scale Ad-Hoc Sensor Networks,” In: Proceedings of the 2002 IEEE International Conference On Robotics and Automation 2 (IEEE, 2002) pp. 11431148.Google Scholar
Agogino, A. M., Granderson, J. and Qiu, S.. “Sensor Validation and Fusion with Distributed Smart Dustmotes for Monitoring and Enabling Efficient Energy Use,” In: Proceedings of the AAAI 2002 Spring Symposium (2002) pp. 5157.Google Scholar
Warneke, B., Last, M., Liebowitz, B. and Pister, K. S. J., “Smart dust: Communicating with a cubic-millimeter computer,” Computer 34(1), 4451 (2001).CrossRefGoogle Scholar
Wen, Y.-J.. Smart Dust Sensor Mote Characterization, Validation, Fusion and Actuation. Master’s Thesis (University of California, Berkeley, 2004).Google Scholar
Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M., Brewer, E. and Culler, D., “Tinyos: An operating system for sensor networks,” Ambient intell., 115148 (2005).CrossRefGoogle Scholar
Pinciroli, C. and Beltrame, G.. Buzz: An Extensible Programming Language for Heterogeneous Swarm Robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2016) pp. 37943800.CrossRefGoogle Scholar
Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Frederick, D. and Birattari, M., “Argos: A modular, parallel, multi-engine simulator for multi-robot systems,” Lect. Notes Comput. Sci. 6(4), 271295 (2012).Google Scholar
McMickell, M. B., Goodwine, B. and Montestruque, L. A., “Micabot: A Robotic Platform for Large-Scale Distributed Robotics,” In: 2003 IEEE International Conference On Robotics and Automation (Cat No. 03CH37422), vol. 2, IEEE, (2003) pp. 16001605,CrossRefGoogle Scholar
Hill, J. and Culler, D., A Wireless Embedded Sensor Architecture for System-Level Optimization. Technical Report (University of California at Berkeley, 2002).Google Scholar
Bergbeiter, S., Costbots: An Off-Theshelf Platform for Distributed Robotics. Master’s Thesis (University of California at Berkeley, 2004).Google Scholar
Bergbreiter, S. and Pister, K. S. J., “Cotsbots: An Off-the-Shelf Platform for Distributed Robotics,” In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), vol. 2 (IEEE, 2003) pp. 16321637,CrossRefGoogle Scholar
Caprari, G. and Siegwart, R.. Mobile Micro-Robots Ready to Use: Alice. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2005) pp. 32953300.Google Scholar
Ergen, S. C.. Zigbee/ieee 802.15. 4 Summary. UC Berkeley, September 10 (2004).Google Scholar
lvaro Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, Félix and Magdalena, L.. Open e-Puck Range & Bearing Miniaturized Board for Local Communication in Swarm Robotics. In: Proceeding of the IEEE International Conference on Robotics and Automation (2009) pp. 31113116.Google Scholar
Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D. and Martinoli, A.. The e-Puck, a Robot Designed for Education in Engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1 (2009) pp. 5965.Google Scholar
Kernbach, S., “Swarmrobot. Org-Open-Hardware Microrobotic Project for Large-Scale Artificial Swarms. arXiv preprint arXiv:1110.5762 (2011).Google Scholar
Loh, C. C. and Traechtler, A., “Cooperative transportation of a load using nonholonomic mobile robots,” Procedia Eng. 41, 860866 (2012).CrossRefGoogle Scholar
Lynch, A. J., Multi-Robot Behaviors with Bearing-Only Sensors and Scale-Free Coordinates. Master’s Thesis (Rice University, 2012).Google Scholar
McLurkin, J., Rykowski, J., John, M., Kaseman, Q. and Lynch, A. J., “Using multi-robot systems for engineering education: Teaching and outreach with large numbers of an advanced, low-cost robot,” IEEE Trans. Educ. 56(1), 2433 (2012).CrossRefGoogle Scholar
Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A. and Nagpal, R., “Kilobot: A low cost robot with scalable operations designed for collective behaviors,” Robot. Auton. Syst. 62(7), 966975 (2014).CrossRefGoogle Scholar
Rubenstein, M., Ahler, C. and Nagpal, R.. Kilobot: A low cost scalable robot system for collective behaviors. In: Proceeding of the IEEE International Conference on Robotics and Automation (2012) pp. 32933298.Google Scholar
Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A., Feron, E. and Egerstedt, M.. The Robotarium: A Remotely Accessible Swarm Robotics Research Testbed. In: 2017 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2017) pp. 16991706.CrossRefGoogle Scholar
Wilson, S., Glotfelter, P., Wang, L., Mayya, S., Notomista, G., Mote, M. and Egerstedt, M., “The robotarium: Globally impactful opportunities, challenges, and lessons learned in remote-access, distributed control of multirobot systems,” IEEE Control Syst. Mag. 40(1), 2644 (2020).CrossRefGoogle Scholar
Paull, L., Tani, J., Ahn, H., Alonso-Mora, J., Carlone, L., Cap, M., Chen, Y. F., Choi, C., Dusek, J., Yajun, F. and Hoehener, D. Duckietown: An Open, Inexpensive and Flexible Platform for Autonomy Education and Research. In: 2017 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2017) pp. 14971504.CrossRefGoogle Scholar
Tani, J., Paull, L., Zuber, M. T., Rus, D., How, J., Leonard, J. and Censi, A., “Duckietown: An Innovative Way to Teach Autonomy,” In: Educational Robotics in the Makers Era, vol. 1 (Springer, 2017) pp. 104121.CrossRefGoogle Scholar
Beaver, L. E., Behdad Chalaki, A. M. I. M., Zhao, L., Zayas, R. and Malikopoulos, A. A., “Demonstration of a time-efficient mobility system using a scaled smart city,” Veh. Syst. Dyn. 58(5), 787804 (2020).CrossRefGoogle Scholar
Chalaki, B., Beaver, L. E., Mahbub, A. M. I., Bang, H. and Malikopoulos, A. A., “A research and educational robotic testbed for real-time control of emerging mobility systems: From theory to scaled experiments [applications of control],” IEEE Control Syst. Mag. 42(6), 2034 (2022).CrossRefGoogle Scholar
Stager, A., Bhan, L., Malikopoulos, A. and Zhao, L., “A scaled smart city for experimental validation of connected and automated vehicles,” IFAC-PapersOnLine 51(9), 130135 (2018).CrossRefGoogle Scholar
Lauwers, T. and Nourbakhsh, I.. Designing the Finch: Creating a Robot Aligned to Computer Science Concepts. In: Proceeding of the AAAI Symposium on Educational Advances in Artificial Intelligence (2010).Google Scholar
Wilson, S., Gameros, R., Sheely, M., Lin, M., Dover, K., Gevorkyan, R., Haberland, M., Bertozzi, A. and Berman, S., “Pheeno, a versatile swarm robotic research and education platform,” IEEE Robot. Autom. Lett. 1(2), 884891 (2016).CrossRefGoogle Scholar
Tran, C. H., Educational robotics: A case study with the parallax scribbler robot as a bot-mate (2010).Google Scholar
Thursky, B. and Gaspar, G., Using pololus 3pi robot in the education process (2010).Google Scholar
Correll, N., Bachrach, J., Vickery, D. and Rus, D.. Ad-Hoc Wireless Network Coverage with Networked Robots that Cannot Localize. In: Proceedings of the IEEE International Conference on Robotics and Automation (2009) pp. 38783885.Google Scholar
[Online]. HEXBUG. Available at: http://www.hexbug.com/.Google Scholar
[Online]. VEX Robotics. Available at: http://www.vexrobotics.com/.Google Scholar
[Online]. panStamp. Available at: http://www.panstamp.com/.Google Scholar
[Online]. RoboRealm. Available at: http://www.roborealm.com/.Google Scholar
Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, T.. A Stable Tracking Control Schemefor an Autonomous Mobile Robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (1990) pp. 384389.Google Scholar
Jiang, Z. P., Lefeber, E. and Nijmeijer, H., “Stabilization and tracking of a nonholonomic mobile robot with saturating actuators,” Syst. Control Lett. 42(5), 327332 (2001).CrossRefGoogle Scholar
Jiang, Z. P. and Nijmeijer, H., “Tracking control of mobile robots: A case study in backstepping,” Automatica 33, 13931399 (1997).Google Scholar
Samson, C. and Ait-Abderrahim, K.. Feedback Control of a Nonholonomic Wheeled Cart in Cartesian Space. In: Proceedings of the 1991 IEEE Conference on Robotics and Automation (1991) pp. 11361141.Google Scholar
Kolmanovsky, H. and McClamroch, N. H., “Developmnets in nonholonomic control systems,” IEEE Control Syst. Mag. 15(6), 2036 (1995).Google Scholar
Siegwart, R. and Nourbakhsh, I. R.. Introduction to Autonomous Mobile Robots (MIT Press, 2004).Google Scholar
Lee, S.-O., Cho, Y.-J., Hwang-Bo, M., You, B.-J. and Oh, S.-R.. A Stable Target-Tracking Control for Unicycle Mobile Robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3 (2000) pp. 18221827.Google Scholar
Kuchar, J. K. and Yang, L. C., “A review of conflict detection and resolution modeling methods,” IEEE Trans. Intell. Transp. 1(4), 179189 (2000).CrossRefGoogle Scholar
Wang, Z. and Schwager, M., “Force-amplifying n-robot transport system (force-ants) for cooperative planar manipulation without communication,” Int. J. Robot Res. 35(13), 15641586 (2016).CrossRefGoogle Scholar
Canny, J.. A Voronoi Method for the Piano-Movers Problem. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation, vol. 2 (IEEE, 1985) pp. 530535.CrossRefGoogle Scholar
Schwartz, J. T. and Sharir, M., “On the “piano movers’” problem I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers,” Commun. Pure App. Math. 36(3), 345398 (1983).CrossRefGoogle Scholar
Brown, R. G. and Jennings, J. S.. A Pusher/Steerer Model for Strongly Cooperative Mobile Eobot Manipulation. In: Proccedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots 3 (IEEE, 1995) pp. 562568.Google Scholar
Eoh, G., Jeon, J. D., Choi, J. S. and Lee, B. H.. Multi-Robot Cooperative Formation for Overweight Object Transportation. In: 2011 IEEE/SICE International Symposium on System Integration (SII) (IEEE, 2011) pp. 726731.CrossRefGoogle Scholar
Kube, C. R. and Zhang, H.. The Use of Perceptual Cues in Multi-robot Box-Pushing. In: Proceedings of IEEE International Conference on Robotics and Automation 3 (IEEE, 1996) pp. 20852090.CrossRefGoogle Scholar
Rus, D., Donald, B. and Jennings, J.. Moving Furniture with Teams of Autonomous Robots. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots 1, (IEEE, 1995) pp. 235242.CrossRefGoogle Scholar
Yamada, S. and Saito, J.’ya, “Adaptive action selection without explicit communication for multirobot box-pushing,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 31(3), 398404 (2001).CrossRefGoogle Scholar
[Online]. Arachne System repository. Available at: https://github.com/UMLARSL/Arachne-Bots.Google Scholar