Hostname: page-component-76c49bb84f-l6pkv Total loading time: 0 Render date: 2025-07-10T19:49:15.205Z Has data issue: false hasContentIssue false

Bio-inspired controllable adhesion for robotics: mechanisms, design, and future directions

Published online by Cambridge University Press:  26 June 2025

Tianhui Sun
Affiliation:
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, China
Yunxiao Liu
Affiliation:
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, China
Yu Tian*
Affiliation:
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, China
*
Corresponding author: Yu Tian; Email: tianyu@tsinghua.edu.cn

Abstract

Interfacial interactions, including adhesion and friction, directly affect the ability of the robot system to interact with the external environment, such as the realization of operation and motion functions. Bionics provides guidance for the active control of interface forces. Creatures such as geckos, tree frogs, octopuses, and beetles have developed delicate topological structures and smart control strategies during long-term evolution, facilitating their ability to adhere to, manipulate, capture, and traverse various surfaces across diverse environments. Inspired by the advantages of high strength, adaptability, controllability, durability, and no residue, biomimetic controllable adhesion structures, materials, and systems have been developed, showing a wide range of potential applications in reversible attachment, flexible locomotion, and dexterous grasping. In this paper, the mechanisms and theoretical models of various biological reversible adhesion systems in nature are summarized. Then the design criteria, optimization method, and preparation technology of the artificial adhesion structures based on van der Waals interaction, capillary force, negative pressure, and mechanical interlocking mechanisms are reviewed. In particular, the adhesion/load ratio and the switch ratio of adhesive materials and structures are highlighted to evaluate the adhesion ability and controllability of various designs. The applications of biomimetic controllable adhesion structures and systems in robotics manipulation and locomotion are presented. Finally, the conclusion and possible future direction are discussed.

Information

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Gorb, S. N., “Biological attachment devices: Exploring nature’s diversity for biomimetics,” Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci. 366(1870), 15571574 (2008). doi: 10.1098/rsta.2007.2172.CrossRefGoogle ScholarPubMed
Arzt, E., Gorb, S. and Spolenak, R., “From micro to nano contacts in biological attachment devices,” Proc. Natl. Acad. Sci. 100(19), 1060310606 (2003).10.1073/pnas.1534701100CrossRefGoogle ScholarPubMed
Chung, J. Y. and Chaudhury, M. K., “Roles of discontinuities in bio-inspired adhesive pads,” J. R. Soc. Interface 2(2), 5561 (2005).10.1098/rsif.2004.0020CrossRefGoogle ScholarPubMed
Gao, H., Wang, X., Yao, H., Gorb, S. and Arzt, E., “Mechanics of hierarchical adhesion structures of geckos,” Mech. Mater. 37(2-3), 275285 (2005).10.1016/j.mechmat.2004.03.008CrossRefGoogle Scholar
Varenberg, M., Murarash, B., Kligerman, Y. and Gorb, S. N., “Geometry-controlled adhesion: Revisiting the contact splitting hypothesis,” Appl. Phys. A 103(4), 933938 (2011). doi: 10.1007/s00339-011-6394-0.CrossRefGoogle Scholar
Cobos, A. and Higham, T., “Growing up in a rough world: Scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko),” Beilstein J. Nanotech. 13, 12921302 (2022). doi: 10.3762/bjnano.13.107.CrossRefGoogle Scholar
Emerson, S. B. and Diehl, D., “Toe pad morphology and mechanisms of sticking in frogs,” Biol. J. Linn. Soc. 13(3), 199216 (1980). doi: 10.1111/j.1095-8312.1980.tb00082.x.CrossRefGoogle Scholar
Hanna, G. and Barnes, W., “Adhesion and detachment of the toe pads of tree frogs,” J. Exp. Biol. 155(1), 103125 (1991).10.1242/jeb.155.1.103CrossRefGoogle Scholar
Federle, W., Barnes, W. J. P., Baumgartner, W., Drechsler, P. and Smith, J. M., “Wet but not slippery: Boundary friction in tree frog adhesive toe pads,” J. R. Soc. Interface 3(10), 689697 (2006).10.1098/rsif.2006.0135CrossRefGoogle Scholar
Langer, M. G., Ruppersberg, J. P. and Gorb, S., “Adhesion forces measured at the level of a terminal plate of the fly’s seta,” Proc. R. Soc. Lond. Ser. B: Biol. Sci. 271(1554), 22092215 (2004). doi: 10.1098/rspb.2004.2850.CrossRefGoogle ScholarPubMed
Peng, Z., Wang, C. and Chen, S., “The microstructure morphology on ant footpads and its effect on ant adhesion,” Acta Mech. 227(7), 20252037 (2016). doi: 10.1007/s00707-016-1612-7.CrossRefGoogle Scholar
Smith, A., “Negative-pressure generated by octopus suckers - a study of the tensile-strength of water in nature,” J. Exp. Biol. 157(1), 257271 (1991).10.1242/jeb.157.1.257CrossRefGoogle Scholar
Kier, W. and Smith, A., “The structure and adhesive mechanism of octopus suckers,” Integr. Comp. Biol. 42(6), 11461153 (2002). doi: 10.1093/icb/42.6.1146.CrossRefGoogle ScholarPubMed
Tramacere, F., Beccai, L., Kuba, M., Gozzi, A., Bifone, A., Mazzolai, B. and Laudet, V., “The morphology and adhesion mechanism of Octopus vulgaris suckers,” PLOS ONE 8(6), e65074 (2013). doi: 10.1371/journal.pone.0065074.CrossRefGoogle ScholarPubMed
Tramacere, F., Kovalev, A., Kleinteich, T., Gorb, S. N. and Mazzolai, B., “Structure and mechanical properties of Octopus vulgaris suckers,” J. R. Soc. Interface 11(91), 20130816 (2014). doi: 10.1098/rsif.2013.0816.CrossRefGoogle ScholarPubMed
Tramacere, F., Pugno, N. M., Kuba, M. J. and Mazzolai, B., “Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment,” Interface Focus 5(1), 20140050 (2015). doi: 10.1098/rsfs.2014.0050.CrossRefGoogle ScholarPubMed
Kim, K.-I., Kim, Y.-T. and Kim, D.-E., “Adhesion characteristics of the snail foot under various surface conditions,” Int. J. Precis. Eng. Manuf. 11(4), 623628 (2010). doi: 10.1007/s12541-010-0073-5.CrossRefGoogle Scholar
Dai, Z., Gorb, S. N. and Schwarz, U., “Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae),” J. Exp. Biol. 205(16), 24792488 (2002).10.1242/jeb.205.16.2479CrossRefGoogle Scholar
Jiang, H., Hawkes, E. W., Fuller, C., Estrada, M. A., Suresh, S. A., Abcouwer, N., Han, A. K., Wang, S., Ploch, C. J., Parness, A. and Cutkosky, M. R., “A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity,” Sci. Robot. 2(7), eaan4545 (2017).10.1126/scirobotics.aan4545CrossRefGoogle ScholarPubMed
Tao, D., Gao, X., Lu, H., Liu, Z., Li, Y., Tong, H., Pesika, N., Meng, Y. and Tian, Y., “Controllable anisotropic dry adhesion in vacuum: Gecko inspired wedged surface fabricated with ultraprecision diamond cutting,Adv. Funct. Mater. 27(22), 1606576 (2017). doi: 10.1002/adfm.201606576.CrossRefGoogle Scholar
Hu, H., Wang, D., Tian, H., Huang, Q., Wang, C., Chen, X., Gao, Y., Li, X., Chen, X., Zheng, Z. and Shao, J., “Bioinspired hierarchical structures for contact-sensible adhesives,Adv. Funct. Mater. 32(8), 2109076 (2022). doi: 10.1002/adfm.202109076.CrossRefGoogle Scholar
Kim, J. M., Coutinho, A., Park, Y. J. and Rodrigue, H., “Octopus-inspired suction cup array for versatile grasping operations,” IEEE Robot. Autom. Lett. 8(5), 29622969 (2023). doi: 10.1109/LRA.2023.3263377.CrossRefGoogle Scholar
Wang, Z., Sun, G., Fan, X., Xiao, P. and Zhu, L., “Biomimetic octopus suction cup with attachment force self-sensing capability for cardiac adhesion,” Soft Robot. 11(6), 10431054 (2024). doi: 10.1089/soro.2023.0208.CrossRefGoogle ScholarPubMed
Li, Y., Ahmed, A., Sameoto, D. and Menon, C., “Abigaille II: Toward the development of a spider-inspired climbing robot,” Robotica 30(1), 7989 (2012). doi: 10.1017/S0263574711000373.CrossRefGoogle Scholar
Liu, Y. and Seo, T., “AnyClimb-II: Dry-adhesive linkage-type climbing robot for uneven vertical surfaces,” Mech. Mach. Theory 124, 197210 (2018). doi: 10.1016/j.mechmachtheory.2018.02.010.CrossRefGoogle Scholar
Liu, Y., Sun, Y., Cao, K., Wu, S., Xu, X., Han, Q., Wen, S., Shen, H., Chen, G., Xu, J., Yu, Z. and Ji, A., “Wheel-legged in-pipe robot with a bioinspired hook and dry adhesive attachment device,” J. Bionic Eng. 21(3), 12081222 (2024). doi: 10.1007/s42235-024-00506-6.CrossRefGoogle Scholar
Li, L., Wang, S., Zhang, Y., Song, S., Wang, C., Tan, S., Zhao, W., Wang, G., Sun, W., Yang, F., Liu, J., Chen, B., Xu, H., Nguyen, P., Kovac, M. and Wen, L., “Aerial-Aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces,” Sci. Robot. 7(66), eabm6695 (2022). doi: 10.1126/scirobotics.abm6695.CrossRefGoogle ScholarPubMed
Kwak, M. K., Jeong, H‐Eui and Suh, K. Y., “Rational design and enhanced biocompatibility of a dry adhesive medical skin patch,” Adv. Mater. 23(34), 39493953 (2011). doi: 10.1002/adma.201101694.CrossRefGoogle ScholarPubMed
Kim, T., Park, J., Sohn, J., Cho, D. and Jeon, S., “Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes,” ACS Nano 10(4), 47704778 (2016).10.1021/acsnano.6b01355CrossRefGoogle ScholarPubMed
Drotlef, D‐M., Amjadi, M., Yunusa, M. and Sitti, M., “Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors,” Adv. Mater. 29(28), 1701353 (2017).10.1002/adma.201701353CrossRefGoogle ScholarPubMed
Baik, S., Lee, H. J., Kim, D. W., Min, H. and Pang, C., “Capillarity-enhanced organ-attachable adhesive with highly drainable wrinkled octopus-inspired architectures,” ACS Appl. Mater. Interf. 11(29), 2567425681 (2019). doi: 10.1021/acsami.9b05511.CrossRefGoogle ScholarPubMed
Ruan, R., Li, J., Xu, K. and Chen, Y., “Hydrogel patch with biomimetic tree frog micropillars for enhanced adhesion and perspiration wicking,” ACS Appl. Polymer Mater. 6(8), 45994606 (2024). doi: 10.1021/acsapm.4c00147.CrossRefGoogle Scholar
del Campo, A., Greiner, C. and Arzt, E., “Contact shape controls adhesion of bioinspired fibrillar surfaces.Langmuir ACS J. Surf. Colloids 23(20), 1023510243 (2007).10.1021/la7010502CrossRefGoogle ScholarPubMed
Heepe, L. and Gorb, S. N., “Biologically Inspired Mushroom-Shaped Adhesive Microstructures,” In: Annual Review of Materials Research, Clarke, D. R., 44, (2014) pp. 173203. doi: 10.1146/annurev-matsci-062910-100458.CrossRefGoogle Scholar
Carbone, G. and Pierro, E., “Sticky bio-inspired micropillars: Finding the best shape,” Small 8(9), 14491454 (2012). doi: 10.1002/smll.201102021.CrossRefGoogle ScholarPubMed
Heepe, L., Kovalev, A. E., Filippov, A. E. and Gorb, S. N., “Adhesion failure at 180,000 frames per second: Direct observation of the detachment process of a mushroom-shaped adhesive,” Phys. Rev. Lett. 111(10), 104301 (2013).10.1103/PhysRevLett.111.104301CrossRefGoogle ScholarPubMed
Aksak, B., Sahin, K. and Sitti, M., “The optimal shape of elastomer mushroom-like fibers for high and robust adhesion,” Beilstein J. Nanotechnol. 5(1), 630638 (2014).10.3762/bjnano.5.74CrossRefGoogle ScholarPubMed
Chen, H., Zhang, L., Zhang, D., Zhang, P. and Han, Z., “Bioinspired surface for surgical graspers based on the strong wet friction of tree frog toe pads,” ACS Appl. Mater. Interf. 7(25), 1398713995 (2015). doi: 10.1021/acsami.5b03039.CrossRefGoogle ScholarPubMed
Drotlef, D.M., Stepien, L., Kappl, M., Barnes, W. J. P., Butt, H‐J. C. and del Campo, A., “Insights into the adhesive mechanisms of tree frogs using artificial mimics,” Adv. Funct. Mater. 23(9), 11371146 (2013). doi: 10.1002/adfm.201202024.CrossRefGoogle Scholar
Iturri, J., Xue, L., Kappl, M., García‐Fernández, L., Barnes, W. J. P., Butt, H‐J. C. and del Campo, A., “Torrent frog-inspired adhesives: Attachment to flooded surfaces,” Adv. Funct. Mater. 25(10), 14991505 (2015). doi: 10.1002/adfm.201403751.CrossRefGoogle Scholar
Xie, J., Li, M., Dai, Q., Huang, W. and Wang, X., “Key parameters of biomimetic patterned surface for wet adhesion,” Int. J. Adhes. Adhes. 82, 7278 (2018). doi: 10.1016/j.ijadhadh.2018.01.004.CrossRefGoogle Scholar
Baik, S., Kim, J., Lee, H. J., Lee, T. H. and Pang, C., “Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3D microtips for underwater surface and hairy skin,” Adv. Sci. 5(8), 1800100 (2018). doi: 10.1002/advs.201800100.CrossRefGoogle ScholarPubMed
Eroğlu, M. and Parmak, E. D.Ş., “A simple manufacturing process of the miniaturised octopus-inspired underwater soft robotic grippers,” J. Adhes. Sci. Technol. 37(7), 11631176 (2023). doi: 10.1080/01694243.2022.2043056.CrossRefGoogle Scholar
Zhu, B., Cao, H., Chen, Z., Wang, W., Shi, Z., Xiao, K., Lei, Y., Liu, S., Song, Y. and Xue, L., “Bioinspired micropillar array with micropit for robust and strong adhesion,” Chem. Eng. J. 454, 140227 (2023).10.1016/j.cej.2022.140227CrossRefGoogle Scholar
Asbeck, A. T., Kim, S., Cutkosky, M. R., Provancher, W. R. and Lanzetta, M., “Scaling hard vertical surfaces with compliant microspine arrays,” Int. J. Robot. Res. 25(12), 11651179 (2006).10.1177/0278364906072511CrossRefGoogle Scholar
Jiang, H., Wang, S. and Cutkosky, M. R., “Stochastic models of compliant spine arrays for rough surface grasping,” Int. J. Robot. Res. 37(7), 669687 (2018).10.1177/0278364918778350CrossRefGoogle Scholar
Wang, S., Jiang, H. and Cutkosky, M. R., “A palm for a rock climbing robot based on dense arrays of micro-spines,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2016), pp. 52–59. doi: 10.1109/IROS.2016.7759034.Google Scholar
Wang, Z., Shi, X., Huang, H., Yao, C., Xie, W., Huang, C., Gu, P., Ma, X., Zhang, Z. and Chen, L.-Q., “Magnetically actuated functional gradient nanocomposites for strong and ultra-durable biomimetic interfaces/surfaces,” Mater. Horiz. 4(5), 869877 (2017). doi: 10.1039/c7mh00223h.CrossRefGoogle Scholar
Jin, K., Cremaldi, J. C., Erickson, J. S., Tian, Y., Israelachvili, J. N. and Pesika, N. S., “Biomimetic bidirectional switchable adhesive inspired by the gecko,” Adv. Funct. Mater. 24(5), 574579 (2014).10.1002/adfm.201301960CrossRefGoogle Scholar
Wang, Y., Li, X., Tian, H., Hu, H., Tian, Y., Shao, J. and Ding, Y., “Rectangle-capped and tilted micropillar array for enhanced anisotropic anti-shearing in biomimetic adhesion,” J. R. Soc. Interface 12(106), 20150090 (2015).10.1098/rsif.2015.0090CrossRefGoogle ScholarPubMed
Pang, C., Kim, J‐K, Wu, Y., Wang, M. Y., Yu, H. and Sitti, M., “Bioinspired microstructured adhesives with facile and fast switchability for part manipulation in dry and wet conditions,” Adv. Funct. Mater. 33(38), 2303116 (2023). doi: 10.1002/adfm.202303116.CrossRefGoogle Scholar
Wang, K., He, B. and Shen, R.-J., “Influence of surface roughness on wet adhesion of biomimetic adhesive pads with planar microstructures,” Micro Nano Lett. 7(12), 12741277 (2012). doi: 10.1049/mnl.2012.0683.CrossRefGoogle Scholar
Murphy, M. P., Kim, S. and Sitti, M., “Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives,” ACS Appl. Mater. Interfaces 1(4), 849855 (2009). doi: 10.1021/am8002439.CrossRefGoogle ScholarPubMed
Zhang, L., Chen, H., Guo, Y., Wang, Y., Jiang, Y., Zhang, D., Ma, L., Luo, J. and Jiang, L., “Micro-nano hierarchical structure enhanced strong wet friction surface inspired by tree frogs,” Adv. Sci. 7(20), 2001125 (2020). doi: 10.1002/advs.202001125.CrossRefGoogle ScholarPubMed
Liu, Q., Tan, D., Meng, F., Yang, B., Shi, Z., Wang, X., Li, Q., Nie, C., Liu, S. and Xue, L., “Adhesion enhancement of micropillar array by combining the adhesive design from gecko and tree frog,” Small 17(4), 2005493 (2021). doi: 10.1002/smll.202005493.CrossRefGoogle ScholarPubMed
Wang, Z., “Slanted functional gradient micropillars for optimal bioinspired dry adhesion,” ACS Nano 12(2), 12731284 (2018).10.1021/acsnano.7b07493CrossRefGoogle ScholarPubMed
Liu, Q., Meng, F., Tan, D., Shi, Z., Zhu, B., Xiao, K., Xue, L., “Gradient micropillar array inspired by tree frog for robust adhesion on dry and wet surfaces,” Biomimetics 7(4), 209 (2022). doi: 10.3390/biomimetics7040209.CrossRefGoogle ScholarPubMed
Sun, Y., Tang, L., Wang, L., Guo, Q., Lv, Y. and Yang, L., “Liquid-amplified electrostatically driven octopus sucker-inspired suction cup,” Adv. Intell. Syst. 7(1), 2400279 (2025). doi: 10.1002/aisy.202400279.CrossRefGoogle Scholar
Hajj‐Ahmad, A., Han, A. K., Lin, M. A., Glover, G. H. and Cutkosky, M. R., “An electrostatically actuated gecko adhesive clutch,” Adv. Mater. Technol. 8(12), 2202025 (2023). doi: 10.1002/admt.202202025.CrossRefGoogle Scholar
Tian, H., Liu, H., Shao, J., Li, S., Li, X. and Chen, X., “An electrically active gecko-effect soft gripper under a low voltage by mimicking gecko’s adhesive structures and toe muscles,” Soft Matter. 16(24), 55995608 (2020). doi: 10.1039/d0sm00787k.CrossRefGoogle Scholar
Kizilkan, E., Strueben, J., Staubitz, A. and Gorb, S. N., “Bioinspired photocontrollable microstructured transport device,” Sci. Robot. 2(2), eaak9454 (2017). doi: 10.1126/scirobotics.aak9454.CrossRefGoogle ScholarPubMed
Kim, J., Yeom, J., Ro, Y. G., Na, G., Jung, W. and Ko, H., “Plasmonic hydrogel actuators for octopus-inspired photo/thermoresponsive smart adhesive patch,” ACS Nano 18(32), 2136421375 (2024). doi: 10.1021/acsnano.4c05788.CrossRefGoogle ScholarPubMed
Li, X., Shi, Q., Wei, H., Zhao, X., Tong, Z., Zhu, X., “Soft gripper with electro-thermally driven artificial fingers made of tri-layer polymers and a dry adhesive surface,” Biomimetics 7(4), 167 (2022). doi: 10.3390/biomimetics7040167.CrossRefGoogle Scholar
Zhang, J., Tian, H., Liu, H., Wang, D., Wu, Y., Li, X., Wang, C., Chen, X. and Shao, J., “Electrothermal dry adhesives with high adhesion under low temperatures based on tunable stiffness,” Adv. Funct. Mater. 34(10), 2309800 (2023). doi: 10.1002/adfm.202309800.CrossRefGoogle Scholar
Kortman, V. G., Sakes, Aée, Endo, G. and Breedveld, P., “A bio-inspired expandable soft suction gripper for minimal invasive surgery-an explorative design study,” Bioinspir. Biomim. 18(4), 046004 (2023). doi: 10.1088/1748-3190/accd35.CrossRefGoogle ScholarPubMed
Autumn, K. and Hansen, W., “Ultrahydrophobicity indicates a non-adhesive default state in gecko setae,” J.Compar. Physiol. A 192(11), 12051212 (2006). doi: 10.1007/s00359-006-0149-y.CrossRefGoogle Scholar
Liu, Y., Sun, S., Wu, X. and Mei, T., “A wheeled wall-climbing robot with bio-inspired spine mechanisms,” J. Bionic Eng. 12(1), 1728 (2015). doi: 10.1016/S1672-6529(14)60096-2.CrossRefGoogle Scholar
Niewiarowski, P. H., Stark, A. Y. and Dhinojwala, A., “Sticking to the story: Outstanding challenges in gecko-inspired adhesives,” J. Exp. Biol. 219(7), 912919 (2016). doi: 10.1242/jeb.080085.CrossRefGoogle Scholar
Hensel, R., Moh, K. and Arzt, E., “Engineering micropatterned dry adhesives: From contact theory to handling applications,” Adv. Funct. Mater. 28, 1800865 (2018). doi: 10.1002/adfm.201800865.CrossRefGoogle Scholar
Sikdar, S., Rahman, M.H., Siddaiah, A., Menezes, P.L., “Gecko-inspired adhesive mechanisms and adhesives for robots-a review,” Intel. Syst. Contr. Aut. 11(6), 143 (2022). doi: 10.3390/robotics11060143.Google Scholar
Vallet, Y., Laurent, C., Bertholdt, C., Rahouadj, R. and Morel, O., “Analysis of suction-based gripping strategies in wildlife towards future evolutions of the obstetrical suction cup,” Bioinspir. Biomim. 17(6), 061003 (2022). doi: 10.1088/1748-3190/ac9878.CrossRefGoogle ScholarPubMed
Zhang, Y., Wan, X., Xu, X., Teng, P. and Wang, S., “Recent progress of tree frog toe pads inspired wet adhesive materials,” Biosurf. Biotribol. 8(4), 279289 (2022). doi: 10.1049/bsb2.12049.CrossRefGoogle Scholar
Liu, Y., Wang, H., Li, J., Li, P., and Li, S., “Gecko-inspired controllable adhesive: Structure, fabrication, and application,” Biomimetics 9(3), 149 (2024). doi: 10.3390/biomimetics9030149.CrossRefGoogle ScholarPubMed
van Veggel, S., Wiertlewski, M. B., Doubrovski, E. L., Kooijman, A., Shahabi, E., Mazzolai, B. and Scharff, R. B. N., “Classification and evaluation of octopus-inspired suction cups for soft continuum robots,” Adv. Sci. 11(30), 2400806 (2024). doi: 10.1002/advs.202400806.CrossRefGoogle ScholarPubMed
van den Boogaart, L. M., Langowski, J.K.A., and Amador, G.J., “Studying stickiness: Methods, trade-offs, and perspectives in measuring reversible biological adhesion and friction,” Biomimetics (Basel, Switzerland) 7(3), 134 (2022). doi: 10.3390/biomimetics7030134.Google ScholarPubMed
Qin, H., Zhang, C., Tan, W., Yang, L., Wang, R., Zhang, Y., Wang, F. and Liu, L., “Bionic adhesion systems: From natural design to artificial application,” Adv. Mater. Technol. 9(2), 2301387 (2024). doi: 10.1002/admt.202301387.CrossRefGoogle Scholar
Brodoceanu, D., Bauer, C. T., Kroner, E., Arzt, E. and Kraus, T., “Hierarchical bioinspired adhesive surfaces-A review,” Bioinspir. Biomim. 11(5), 051001 (2016).10.1088/1748-3190/11/5/051001CrossRefGoogle ScholarPubMed
O’Rorke, R. D., Steele, T. W. J. and Taylor, H. K., “Bioinspired fibrillar adhesives: A review of analytical models and experimental evidence for adhesion enhancement by surface patterns,” J. Adhes. Sci. Technol. 30(4), 362391 (2016).10.1080/01694243.2015.1101183CrossRefGoogle Scholar
Tan, Y. L., Wong, Y. J., Ong, N. W. X., Leow, Y., Wong, J. H. M., Boo, Y. J., Goh, R. and Loh, X. J., “Adhesion evolution: Designing smart polymeric adhesive systems with on-demand reversible switchability,” ACS Nano 18(36), 2468224704 (2024). doi: 10.1021/acsnano.4c05598.CrossRefGoogle ScholarPubMed
Li, J., Yin, F., andTian, Y., “Biomimetic structure and surface for grasping tasks,” Biomimetics 9(3), 144 (2024). doi: 10.3390/biomimetics9030144.CrossRefGoogle ScholarPubMed
Lee, Y. S., Kim, M.-S., Kim, D. W. and Pang, C., “Intelligent structured nanocomposite adhesive for bioelectronics and soft robots,” Nano Res. 17(2), 534549 (2024). doi: 10.1007/s12274-023-6016-0.CrossRefGoogle Scholar
Duan, W., Yu, Z., Cui, W., Zhang, Z., Zhang, W. and Tian, Y., “Bio-inspired switchable soft adhesion for the boost of adhesive surfaces and robotics applications: A brief review,” Adv. Colloid Interface Sci. 313, 102862 (2023).10.1016/j.cis.2023.102862CrossRefGoogle ScholarPubMed
Zhang, L., Liu, G., Guo, Y., Wang, Y., Zhang, D. and Chen, H., “Bioinspired functional surfaces for medical devices,” Chin. J. Mech. Eng. 35(1), 43 (2022). doi: 10.1186/s10033-022-00708-1.CrossRefGoogle Scholar
Xu, K., Zi, P. and Ding, X., “Learning from biological attachment devices: Applications of bioinspired reversible adhesive methods in robotics,” Front. Mech. Eng. 17(3), 43 (2022). doi: 10.1007/s11465-022-0699-x.CrossRefGoogle Scholar
Tian, Y., Pesika, N., Zeng, H., Rosenberg, K., Zhao, B., McGuiggan, P., Autumn, K. and Israelachvili, J., “Adhesion and friction in gecko toe attachment and detachment,” Proc. Natl. Acad. Sci. 103(51), 1932019325 (2006). doi: 10.1073/pnas.0608841103.CrossRefGoogle ScholarPubMed
Zhou, M., Pesika, N., Zeng, H., Wan, J., Zhang, X., Meng, Y., Wen, S. and Tian, Y., “Design of gecko-inspired fibrillar surfaces with strong attachment and easy-removal properties: A numerical analysis of peel-zone,” J. R. Soc. Interface 9(75), 24242436 (2012).10.1098/rsif.2012.0200CrossRefGoogle ScholarPubMed
Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Fearing, R., Israelachvili, J. N. and Full, R. J., “Evidence for van der Waals adhesion in gecko setae,” Proc. Natl. Acad. Sci. U.S.A. 99(19), 1225212256 (2002). doi: 10.1073/pnas.192252799.CrossRefGoogle Scholar
Johnson, K., Kendall, K., and Roberts, A.D., “Surface energy and contact of elastic solids,” Proc. R. Soc. Lond. A Math. Phys. Sci. 324(1558), 301313 (1971). doi: 10.1098/rspa.1971.0141.Google Scholar
Autumn, K., Niewiarowski, P. H. and Puthoff, J. B., “Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering,” Ann. Rev. Ecol. Evol. Syst. 45(1), 445470 (2014).10.1146/annurev-ecolsys-120213-091839CrossRefGoogle Scholar
Huber, G., Gorb, S. N., Spolenak, R. and Arzt, E., “Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy,” Biol. Lett. 1(1), 24 (2005). doi: 10.1098/rsbl.2004.0254.CrossRefGoogle ScholarPubMed
Peressadko, A. and Gorb, S. N., “When less is more: Experimental evidence for tenacity enhancement by division of contact area,” J. Adhes. 80(4), 247261 (2004).10.1080/00218460490430199CrossRefGoogle Scholar
Hui, C.-Y., Glassmaker, N. J., Tang, T. and Jagota, A., “Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion,” J. R. Soc. Interface 1(1), 3548 (2004).10.1098/rsif.2004.0005CrossRefGoogle ScholarPubMed
Glassmaker, N. J., Jagota, A., Hui, C.-Y. and Kim, J., “Design of biomimetic fibrillar interfaces: 1. Making contact,” J. R. Soc. Interface 1(1), 2333 (2004).10.1098/rsif.2004.0004CrossRefGoogle ScholarPubMed
Jagota, A. and Bennison, S. J., “Mechanics of adhesion through a fibrillar microstructure,” Integr. Comp. Biol. 42(6), 11401145 (2002).10.1093/icb/42.6.1140CrossRefGoogle ScholarPubMed
Li, X., Pesika, N., Li, L., Li, X., Li, Y., Bai, P., Meng, Y. and Tian, Y., “Role of structural stiffness on the loading capacity of fibrillar adhesive composite,” Extreme Mech. Lett. 41, 101001 (2020). doi: 10.1016/j.eml.2020.101001.CrossRefGoogle Scholar
Endlein, T., and Barnes, W.J.P, “Wet adhesion in tree and torrent frogs,” Encycl. Nanotechnol. Part 2 120 (2015).10.1007/978-94-007-6178-0_257-2CrossRefGoogle Scholar
Persson, B., “Wet adhesion with application to tree frog adhesive toe pads and tires,” J. Phys. Condensed Matt. 19(37), 376110 (2007). doi: 10.1088/0953-8984/19/37/376110.CrossRefGoogle Scholar
Noble, G. and Jaeckle, M., “The digital pads of the tree frogs - a study of the phylogenesis of an adaptive structure,” J. Morphol. Physiol. 45(1), 259292 (1928). doi: 10.1002/jmor.1050450109.CrossRefGoogle Scholar
Welsch, U., Storch, V. and Fuchs, W., “The fine structure of the digital pads of rhacophorid tree frogs,” Cell Tissue Res. 148(3), 407416 (1974). doi: 10.1007/BF00224267.CrossRefGoogle ScholarPubMed
Barnes, W. J. P., “Functional morphology and design constraints of smooth adhesive pads,” MRS Bull. 32(6), 479485 (2007). doi: 10.1557/mrs2007.81.CrossRefGoogle Scholar
Guo, Y., Zhang, L., Wang, Y., Liang, J., Liu, X., Jiang, Y., Jiang, L. and Chen, H., “Nanofiber embedded bioinspired strong wet friction surface,” Sci. Adv. 9(41), eadi4843 (2023). doi: 10.1126/sciadv.adi4843.CrossRefGoogle ScholarPubMed
Green, D., “Adhesion and the toe-pads of treefrogs,” Copeia 1981(4), 790796 (1981). doi: 10.2307/1444179.CrossRefGoogle Scholar
Barnes, W. J. P., “Bionics and wet grip,” Tire Technol. Int. 2002, 5660 (2002).Google Scholar
Endlein, T., Ji, A., Samuel, D., Yao, N., Wang, Z., Barnes, W. J. P., Federle, W., Kappl, M. and Dai, Z., “Sticking like sticky tape: Tree frogs use friction forces to enhance attachment on overhanging surfaces,” J. R. Soc. Interface 10(80), 20120838 (2013).10.1098/rsif.2012.0838CrossRefGoogle ScholarPubMed
Ehrlich, H. and Ehrlich, H., “Suction in molluscs,” 1, 377–377 (2010). doi: 10.1007/978-90-481-9130-7_27.Google Scholar
Xi, P., Ye, S., Cong, Q. and Sundaramanickam, A., “Abalone adhesion: The role of various adhesion forces and their proportion to total adhesion force,” Plos One 18(6), e0286567 (2023). doi: 10.1371/journal.pone.0286567.CrossRefGoogle ScholarPubMed
Smith, A., “Cephalopod sucker design and the physical limits to negative pressure,” J. Exp. Biol. 199(4), 949958 (1996).10.1242/jeb.199.4.949CrossRefGoogle ScholarPubMed
Tramacere, F., Appel, E., Mazzolai, B. and Gorb, S. N., “Hairy suckers: The surface microstructure and its possible functional significance in the Octopus vulgaris sucker,” Beilstein J. Nanotechnol. 5, 561565 (2014). doi: 10.3762/bjnano.5.66.CrossRefGoogle ScholarPubMed
Baik, S., Kim, D. W., Park, Y., Lee, T.-J., Ho Bhang, S. and Pang, C., “A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi,” Nature 546(7658), 396400 (2017).10.1038/nature22382CrossRefGoogle ScholarPubMed
Omura, A. and Ikeda, Y., “Morphology of the suckers for hunting behavior in broadclub cuttlefish (Sepia latimanus),” Ecol. Res. 37(1), 156162 (2022). doi: 10.1111/1440-1703.12278.CrossRefGoogle Scholar
Li, J., Peng, X., Ma, C., Song, Z. and Liu, J., “Response mechanisms of snails to the pulling force and its potential application in vacuum suction,” J. Mech. Behav. Biomed. Mater. 124, 104840 (2021). doi: 10.1016/j.jmbbm.2021.104840.CrossRefGoogle Scholar
Roderick, W. R. T., Cutkosky, M. R. and Lentink, D., “Bird-inspired dynamic grasping and perching in arboreal environments,” Sci. Robot. 6(61), eabj7562 (2021).10.1126/scirobotics.abj7562CrossRefGoogle ScholarPubMed
Liu, H., Huang, Q., Zhang, W., Chen, X., Yu, Z., Meng, L., Bao, L., Ming, A., Huang, Y., Hashimoto, K. and Takanishi, A., “Cat-inspired mechanical design of self-adaptive toes for a legged robot,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2016), pp. 2425–2430. doi: 10.1109/IROS.2016.7759378.Google Scholar
Kataoka, H., Washio, T., Chinzei, K., Mizuhara, K., Simone, C., and Okamura, A.M.. “Measurement of the tip and friction force acting on a needle during penetration.” In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002: 5th International Conference Tokyo, Japan, September 25-28, 2002 Proceedings, Part I 5, (2002) pp. 216223.Google Scholar
Simone, C. and Okamura, A. M., “Modeling of needle insertion forces for robot-assisted percutaneous therapy,” Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), 20852091 (2002).10.1109/ROBOT.2002.1014848CrossRefGoogle Scholar
Mahvash, M. and Dupont, P. E., “Mechanics of dynamic needle insertion into a biological material,” IEEE Trans. Biomed. Eng. 57(4), 934943 (2009).10.1109/TBME.2009.2036856CrossRefGoogle ScholarPubMed
Popov, V. L., Hess, M., and Popov, V.L.. Handbook of Contact Mechanics: Exact Solutions of Axisymmetric Contact Problems (Springer NatureBerlin, German, 2019).10.1007/978-3-662-58709-6CrossRefGoogle Scholar
Israelachvili, J. N.. Intermolecular and Surface Forces (Academic Press, New York, 2011).Google Scholar
Israelachvili, J., Maeda, N., Rosenberg, K. J. and Akbulut, M., “Effects of sub-angstrom (pico-scale) structure of surfaces on adhesion, friction, and bulk mechanical properties,” J. Mater. Res. 20(8), 19521972 (2005). doi: 10.1557/JMR.2005.0255.CrossRefGoogle Scholar
Popov, V. L.. Contact Mechanics and Friction: Physical Principles and Applications (Springer NatureBerlin, German, 2010).10.1007/978-3-642-10803-7CrossRefGoogle Scholar
Fuller, K. and Tabor, D., “The effect of surface roughness on the adhesion of elastic solids,” Proc. R. Soc. Lond. Math. Phys. Sci. 345(1642), 327342 (1975).Google Scholar
Persson, B. N. J., Albohr, O., Creton, C., and Peveri, V., “Contact area between a viscoelastic solid and a hard, randomly rough, substrate,” J. Chem. Phys. 120(18), 87798793 (2004). doi: 10.1063/1.1697376.CrossRefGoogle Scholar
King, D. R., Bartlett, M. D., Gilman, C. A., Irschick, D. J. and Crosby, A. J., “Creating gecko-like adhesives for “real world, surfaces,” Adv. Mater. 26(25), 43454351 (2014). doi: 10.1002/adma.201306259.CrossRefGoogle ScholarPubMed
Hu, H., Tian, H., Gao, Y., Wan, Z., Wang, L., Xu, H., Wang, C., Shao, J. and Zheng, Z., “Revisiting the contact splitting hypothesis: An effective route for enhancing adhesion on rough surface,” J. Mech. Phys. Solids 170, 105121 (2023). doi: 10.1016/j.jmps.2022.105121.CrossRefGoogle Scholar
Barreau, V., Hensel, R., Guimard, N. K., Ghatak, A., McMeeking, R. M. and Arzt, E., “Fibrillar elastomeric micropatterns create tunable adhesion even to rough surfaces,” Adv. Funct. Mater. 26(26), 46874694 (2016).10.1002/adfm.201600652CrossRefGoogle Scholar
Aksak, B., Murphy, M.P., and Sitti, M.. “Adhesion of biologically inspired vertical and angled polymer microfiber arrays,” Langmuir 23, 33223322 (2007).10.1021/la062697tCrossRefGoogle ScholarPubMed
Spolenak, R., Gorb, S. and Arzt, E., “Adhesion design maps for bio-inspired attachment systems,” Acta Biomater. 1(1), 513 (2005). doi: 10.1016/j.actbio.2004.08.004.CrossRefGoogle ScholarPubMed
Greiner, C., Spolenak, R. and Arzt, E., “Adhesion design maps for fibrillar adhesives: The effect of shape,” Acta Biomater. 5(2), 597606 (2009). doi: 10.1016/j.actbio.2008.09.006.CrossRefGoogle ScholarPubMed
Gao, H., Ji, B., Jäger, I. L., Arzt, E. and Fratzl, P., “Materials become insensitive to flaws at nanoscale: Lessons from nature,” Proc. Natl. Acad. Sci. 100(10), 55975600 (2003).10.1073/pnas.0631609100CrossRefGoogle ScholarPubMed
Qu, L., Dai, L., Stone, M., Xia, Z., and Wang, Z.L., “Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off,” Science 322(5899), 238–42 (2008).10.1126/science.1159503CrossRefGoogle ScholarPubMed
Carbone, G., Pierro, E. and Gorb, S. N., “Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces,” Soft Matter 7(12), 55455552 (2011).10.1039/c0sm01482fCrossRefGoogle Scholar
Gorb, S. N. and Varenberg, M., “Mushroom-shaped geometry of contact elements in biological adhesive systems,” J. Adhes. Sci. Technol. 21(12-13), 11751183 (2007).10.1163/156856107782328317CrossRefGoogle Scholar
Heepe, L., Carbone, G., Pierro, E., Kovalev, A. E. and Gorb, S. N., “Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure,” Appl. Phys. Lett. 104(1), 011906 (2014).10.1063/1.4860991CrossRefGoogle Scholar
Dayan, C. B., Son, D., Aghakhani, A., Wu, Y., Demir, S. O. and Sitti, M., “Machine learning-based shear optimal adhesive microstructures with experimental validation,” Small 20(2), 2304437 (2024). doi: 10.1002/smll.202304437.CrossRefGoogle ScholarPubMed
Son, D., Liimatainen, V. and Sitti, M., “Machine learning-based and experimentally validated optimal adhesive fibril designs,” Small 17(39), 2102867 (2021). doi: 10.1002/smll.202102867.CrossRefGoogle ScholarPubMed
Peisker, H., Michels, J. and Gorb, S. N., “Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata,” Nat. Commun. 4(1), 1661 (2013). doi: 10.1038/ncomms2576.CrossRefGoogle ScholarPubMed
Perez Goodwyn, P., Peressadko, A., Schwarz, H., Kastner, V. and Gorb, S., “Material structure, stiffness, and adhesion: Why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera),” J. Compar. Physiol. A 192(11), 12331243 (2006). doi: 10.1007/s00359-006-0156-z.CrossRefGoogle ScholarPubMed
Bhushan, B., Peressadko, A. G. and Kim, T.-W., “Adhesion analysis of two-level hierarchical morphology in natural attachment systems for smart adhesion,” J. Adhes. Sci. Technol. 20(13), 14751491 (2006).10.1163/156856106778666408CrossRefGoogle Scholar
Kim, T. W. and Bhushan, B., “Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement,” Ultramicroscopy 107(10-11), 902912 (2007).10.1016/j.ultramic.2006.11.008CrossRefGoogle ScholarPubMed
Jeong, H. E., Lee, J.-K., Kim, H. N., Moon, S. H. and Suh, K. Y., “A nontransferring dry adhesive with hierarchical polymer nanohairs,” Proc. Natl. Acad. Sci. 106(14), 56395644 (2009). doi: 10.1073/pnas.0900323106.CrossRefGoogle ScholarPubMed
Röhrig, M., Thiel, M., Worgull, M. and Hölscher, H., “3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces,” Small 8(19), 30093015 (2012).10.1002/smll.201200308CrossRefGoogle ScholarPubMed
Rong, Z., Zhou, Y., Chen, B., Robertson, J., Federle, W., Hofmann, S., Steiner, U. and Goldberg‐Oppenheimer, P., “Bio-inspired hierarchical polymer fiber-carbon nanotube adhesives,” Adv. Mater. 26(9), 14561461 (2014).10.1002/adma.201304601CrossRefGoogle ScholarPubMed
Bauer, C. T., Kroner, E., Fleck, N. A. and Arzt, E., “Hierarchical macroscopic fibrillar adhesives: In situ study of buckling and adhesion mechanisms on wavy substrates,” Bioinspir. Biomim. 10(6), 066002 (2015).10.1088/1748-3190/10/6/066002CrossRefGoogle ScholarPubMed
Sahay, R., Baji, A., Parveen, H. and Ranganath, A. S., “Dry-adhesives based on hierarchical poly(methyl methacrylate) electrospun fibers,” Appl. Phys. A Mater. Sci. Proc. 123(3), 182 (2017). doi: 10.1007/s00339-017-0816-6.CrossRefGoogle Scholar
Raut, H. K., Baji, A., Hariri, H. H., Parveen, H., Soh, G. S., Low, H. Y. and Wood, K. L., “Gecko-inspired dry adhesive based on micro-nanoscale hierarchical arrays for application in climbing devices,” ACS Appl. Mater. Interf. 10(1), 12881296 (2018). doi: 10.1021/acsami.7b09526.CrossRefGoogle ScholarPubMed
Shen, C., Cheng, Y., Peng, Z. and Chen, S., “Switchable adhesion of gecko-inspired hierarchically wedge-mushroom-shaped surface,” Chem. Eng. J. 488, 150900 (2024). doi: 10.1016/j.cej.2024.150900.CrossRefGoogle Scholar
Fischer, S. C. L., Arzt, E. and Hensel, R., “Composite pillars with a tunable interface for adhesion to rough substrates,” ACS Appl. Mater. Interfaces 9(1), 10361044 (2017). doi: 10.1021/acsami.6b11642.CrossRefGoogle ScholarPubMed
Minsky, H. K. and Turner, K. T., “Achieving enhanced and tunable adhesion via composite posts,” Appl. Phys. Lett. 106(20), 201604 (2015).10.1063/1.4921423CrossRefGoogle Scholar
Tan, D., Luo, A., Wang, X., Shi, Z., Lei, Y., Steinhart, M., Kovalev, A., Gorb, S. N., Turner, K. T. and Xue, L., “Humidity-modulated core-shell nanopillars for enhancement of gecko-inspired adhesion,” ACS Appl. Nano Mater. 3(4), 35963603 (2020). doi: 10.1021/acsanm.0c00314.CrossRefGoogle Scholar
Tian, H., Wang, D., Zhang, Y., Jiang, Y., Liu, T., Li, X., Wang, C., Chen, X. and Shao, J., “Core-shell dry adhesives for rough surfaces via electrically responsive self-growing strategy,” Nat. Commun. 13(1), 7659 (2022).10.1038/s41467-022-35436-6CrossRefGoogle ScholarPubMed
Geim, A. K., Dubonos, S. V., Grigorieva, I. V., Novoselov, K. S., Zhukov, A. A. and Shapoval, S. Y., “Microfabricated adhesive mimicking gecko foot-hair,” Nat. Mater. 2(7), 461463 (2003).10.1038/nmat917CrossRefGoogle ScholarPubMed
Yi, H., Hwang, I., Sung, M., Lee, D., Kim, J.-H., Kang, S. M., Bae, W.-G. and Jeong, H. E., “Bio-inspired adhesive systems for next-generation green manufacturing,” Int. J. Prec. Eng. Manuf. Green Technol. 1(4), 347351 (2014).10.1007/s40684-014-0044-xCrossRefGoogle Scholar
Wang, W., Liu, Y. and Xie, Z., “Effects of loading and unloading control parameters on adhesive performance for biomimetic controllable adhesive with wedge-shaped microstructures,” Bioinspir. Biomim. 17(3), 036013 (2022). doi: 10.1088/1748-3190/ac5e80.CrossRefGoogle ScholarPubMed
Shi, W., Cheng, X. and Cheng, K., “Gecko-inspired adhesives with asymmetrically tilting-oriented micropillars,” Langmuir 38(29), 88908898 (2022). doi: 10.1021/acs.langmuir.2c01002.CrossRefGoogle ScholarPubMed
Busche, J. F., Starke, G., Knickmeier, S. and Dietzel, A., “Controllable dry adhesion based on two-photon polymerization and replication molding for space debris removal,” Micro Nano Eng. 7, 100052 (2020). doi: 10.1016/j.mne.2020.100052.CrossRefGoogle Scholar
Hwang, I., Yi, H., Choi, J. and Jeong, H. E., “Fabrication of bioinspired dry adhesives by CNC machining and replica molding,” Int. J. Precis. Eng. Manuf. 18(9), 12391244 (2017). doi: 10.1007/s12541-017-0145-x.CrossRefGoogle Scholar
Seo, S., Lee, J., Kim, K.-S., Ko, K. H., Lee, J. H. and Lee, J., “Anisotropic adhesion of micropillars with spatula pads,” ACS Appl. Mater. Interfaces 6(3), 13451350 (2014).10.1021/am4044135CrossRefGoogle ScholarPubMed
Liu, Y., Zhou, Q., Pan, H., Li, P., and Li, S., “Preparation method and directional adhesion properties of bio-inspired wedge arrays,” China Mech. Eng. 34, 95101 (2023).Google Scholar
Gwon, M., Park, G., Hong, D., Park, Y.-J., Han, S., Kang, D. and Koh, J.-S., “Soft directional adhesion gripper fabricated by 3d printing process for gripping flexible printed circuit boards,” Int. J. Precis. Eng. Manuf. Green Technol. 9(4), 11511163 (2022). doi: 10.1007/s40684-021-00368-x.CrossRefGoogle Scholar
Zhou, T., Ruan, B., Che, J., Li, H., Chen, X. and Jiang, Z., “Gecko-inspired biomimetic surfaces with annular wedge structures fabricated by ultraprecision machining and replica molding,” ACS Omega 6(10), 67576765 (2021). doi: 10.1021/acsomega.0c05804.CrossRefGoogle ScholarPubMed
Suresh, S. A., Kerst, C. F., Cutkosky, M. R. and Hawkes, E. W., “Spatially variant microstructured adhesive with one-way friction,” J. R. Soc. Interface 16(150), 20180705 (2019). doi: 10.1098/rsif.2018.0705.CrossRefGoogle ScholarPubMed
Li, S., Tian, H., Shao, J., Liu, H., Wang, D. and Zhang, W., “Switchable adhesion for nonflat surfaces mimicking geckos’ adhesive structures and toe muscles,” ACS Appl. Mater. Interfaces 12(35), 3974539755 (2020). doi: 10.1021/acsami.0c08686.CrossRefGoogle ScholarPubMed
Frey, S. T., Haque, A. B. M. T., Tutika, R., Krotz, E. V., Lee, C., Haverkamp, C. B., Markvicka, E. J. and Bartlett, M. D., “Octopus-inspired adhesive skins for intelligent and rapidly switchable underwater adhesion,” Sci. Adv. 8(28), eabq1905 (2022). doi: 10.1126/sciadv.abq1905.CrossRefGoogle ScholarPubMed
Chen, W., Sun, T., Li, J., Li, X., Li, L., Meng, Y. and Tian, Y., “Fast stiffness variation gripper with efficient adhesion control,” Smart Mater. Struct. 33(8), 085006 (2024). doi: 10.1088/1361-665X/ad5a59.CrossRefGoogle Scholar
Sun, T., Chen, W., Li, J., Li, X., Li, X., Meng, Y. and Tian, Y., “A versatile and high-load soft gripper enabled by vacuum-assisted bio-inspired interfacial adhesion,” Smart Mater. Struct. 33(1), 015034 (2024). doi: 10.1088/1361-665X/ad1427.CrossRefGoogle Scholar
Shi, X., Yang, L., Li, S., Guo, Y. and Zhao, Z., “Magnetic-field-driven switchable adhesion of NdFeB/PDMS composite with gecko-like surface,” Nano Res. 16(5), 68406848 (2023). doi: 10.1007/s12274-022-5372-5.CrossRefGoogle Scholar
Chai, Z., Liu, M., Chen, L., Peng, Z. and Chen, S., “Controllable directional deformation of micro-pillars actuated by a magnetic field,” Soft Matter 15(43), 88798885 (2019). doi: 10.1039/c9sm01672d.CrossRefGoogle ScholarPubMed
Wang, S., Luo, H., Linghu, C. and Song, J., “Elastic energy storage enabled magnetically actuated, octopus-inspired smart adhesive,” Adv. Funct. Mater. 31(9), 2009217 (2021). doi: 10.1002/adfm.202009217.CrossRefGoogle Scholar
Dadkhah, M., Zhao, Z., Wettels, N., and Spenko, M.. A Self-Aligning Gripper Using an Electrostatic/Gecko-Like Adhesive”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016) (2016) pp. 10061011.Google Scholar
Pang, C., Mak, K., Tse, Y. A., Yu, H. and Wang, M. Y., “Scalable fabrication of bioinspired controllable dry adhesive by roll-to-roll slitting,” Adv. Eng. Mater. 24(11), 2200377 (2022). doi: 10.1002/adem.202200377.CrossRefGoogle Scholar
Li, X., Li, X., Li, L., Meng, Y. and Tian, Y., “Load sharing design of a multi-legged adaptable gripper with gecko-inspired controllable adhesion,” IEEE Robot. Autom. Lett. 6(4), 84828489 (2021). doi: 10.1109/LRA.2021.3107603.CrossRefGoogle Scholar
Wang, Z., Liu, M., Zheng, M., Zhang, F., Zhang, Q., Wang, X., Gorb, S.N., and Dai, Z., “A Gecko-Inspired Gripper with Controllable Adhesion,” In: Intelligent Robotics and Applications (ICIRA 2018), PT II. vol. 10985, (2018) pp. 112–121. doi: 10.1007/978-3-319-97589-4_10.Google Scholar
Seibel, A., Yıldız, M., and Zorlubaş, B., “A gecko-inspired soft passive gripper,” Biomimetics 5(2), 12 (2020). doi: 10.3390/biomimetics5020012.CrossRefGoogle ScholarPubMed
Nagahama, S., Nakao, A. and Sugano, S., “Development of a conveyor-type object release mechanism for a parallel gripper with a mushroom-shaped gecko-inspired surface,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2022), pp. 5787–5793. doi: 10.1109/IROS47612.2022.9981232.Google Scholar
Purtov, J., Frensemeier, M. and Kroner, E., “Switchable adhesion in vacuum using bio-inspired dry adhesives,” ACS Appl. Mater. Interf. 7(43), 2412724135 (2015). doi: 10.1021/acsami.5b07287.CrossRefGoogle ScholarPubMed
Wang, D., Hu, H., Li, S., Tian, H., Fan, W., Li, X., Chen, X., Taylor, A. C. and Shao, J., “Sensing-triggered stiffness-tunable smart adhesives,” Sci. Adv. 9(11), eadf4051 (2023). doi: 10.1126/sciadv.adf4051.CrossRefGoogle ScholarPubMed
Linghu, C., Liu, Y., Yang, X., Li, D., Tan, Y.Y., Mohamed Hafiz, M.H.B., Rohani, M.F.B., Du, Z., Su, J., Li, Y., Gao, H., and Hsia, K.J., “Fibrillar adhesives with unprecedented adhesion strength, switchability and scalability,” Natl. Sci. Rev. 11(10), nwae106 (2024). doi: 10.1093/nsr/nwae106.CrossRefGoogle ScholarPubMed
Yuan, L., Wang, Z., Li, Y. and Wu, T., “Reusable dry adhesives based on ethylene vinyl acetate copolymer with strong adhesion,” J. Appl. Polym. Sci. 136(13), 47296 (2019). doi: 10.1002/app.47296.CrossRefGoogle Scholar
Wang, Y., Hu, H., Shao, J. and Ding, Y., “Fabrication of well-defined mushroom-shaped structures for biomimetic dry adhesive by conventional photolithography and molding,” ACS Appl. Mater. Interf. 6(4), 22132218 (2014).10.1021/am4052393CrossRefGoogle ScholarPubMed
He, Q., Xu, X., Yu, Z., Huo, K., Wang, Z., Chen, N., Sun, X., Yin, G., Du, P., Li, Y. and Dai, Z., “Optimized bio-inspired micro-pillar dry adhesive and its application for an unmanned aerial vehicle adhering on and detaching from a ceiling,” J. Bionic Eng. 17(1), 4554 (2020). doi: 10.1007/s42235-020-0003-x.CrossRefGoogle Scholar
Kerst, C., Suresh, S. A. and Cutkosky, M. R., “Creating metal molds for directional gecko-inspired adhesives,” J. Micro Nano-Manuf. 8(1), 011004(2020). doi: 10.1115/1.4045764.CrossRefGoogle Scholar
Dayan, C. B., Chun, S., Krishna‐Subbaiah, N., Drotlef, D‐M., Akolpoglu, M. B. and Sitti, M., “3D printing of elastomeric bioinspired complex adhesive microstructures,” Adv. Mater. 33(40), 2103826 (2021). doi: 10.1002/adma.202103826.CrossRefGoogle ScholarPubMed
Xu, M., Du, F., Ganguli, S., Roy, A. and Dai, L., “Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range,” Nat. Commun. 7(1), 13450 (2016).10.1038/ncomms13450CrossRefGoogle Scholar
Hu, H., Shao, J., Tian, H., Li, X., and Jiang, C., “Mushroom-shaped microfiber array by electrohydrodynamic structuring process for superhydrophobicity,” in 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), (2015), pp. 1418–1421. doi: 10.1109/NANO.2015.7388904.Google Scholar
Hu, H., Tian, H., Li, X., Shao, J., Ding, Y., Liu, H. and An, N., “Biomimetic mushroom-shaped microfibers for dry adhesives by electrically induced polymer deformation,” ACS Appl. Mater. Interf. 6(16), 1416714173 (2014).10.1021/am503493uCrossRefGoogle ScholarPubMed
Zhang, L., Guo, Y., Wang, Y., Liang, J., Zhou, Y., Liu, X., Zhang, D. and Chen, H., “Multi-dimensional self-splitting behaviors for improving wet attachment on nonuniform bioinspired pillar surface,” Adv. Funct. Mater. 32(47), 2205804 (2022). doi: 10.1002/adfm.202205804.CrossRefGoogle Scholar
Barnes, W. J. P., Goodwyn, P. J. P., Nokhbatolfoghahai, M. and Gorb, S. N., “Elastic modulus of tree frog adhesive toe pads,” J. Comp. Physiol. A 197(10), 969978 (2011). doi: 10.1007/s00359-011-0658-1.CrossRefGoogle ScholarPubMed
Xue, L., Sanz, B., Luo, A., Turner, K. T., Wang, X., Tan, D., Zhang, R., Du, H., Steinhart, M., Mijangos, C., Guttmann, M., Kappl, M. and del Campo, A., “Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog,” ACS Nano 11(10), 97119719 (2017).10.1021/acsnano.7b04994CrossRefGoogle ScholarPubMed
Shi, Z., Tan, D., Liu, Q., Meng, F., Zhu, B., and Xue, L., “Tree frog-inspired nanopillar arrays for enhancement of adhesion and friction,” Biointerphases 16(2), 021001 (2021). doi: 10.1116/6.0000747.CrossRefGoogle ScholarPubMed
Meng, F., Liu, Q., Shi, Z., Tan, D., Yang, B., Wang, X., Shi, K., Kappl, M., Lei, Y., Liu, S. and Xue, L., “Tree frog-inspired structured hydrogel adhesive with regulated liquid,Adv. Mater. Interfaces 8(18), 2100528 (2021). doi: 10.1002/admi.202100528.CrossRefGoogle Scholar
Chun, S., Kim, D. W., Kim, J. and Pang, C., “A transparent, glue-free, skin-attachable graphene pressure sensor with micropillars for skin-elasticity measurement,” Nanotechnology 30(33), 335501 (2019). doi: 10.1088/1361-6528/ab1d99.CrossRefGoogle ScholarPubMed
Shiratori, T., Sakamoto, J., Kanazawa, Y., Suzuki, M., Takahashi, T., and Aoyagi, S., “Micro-adhesive structure inspired by tree frog toe pads fabricated by femtosecond laser processing of PVA sponge,” Appl. Phys. Lett. 123(4), 041603 (2023). doi: 10.1063/5.0160377.CrossRefGoogle Scholar
Chen, Y.-C. and Yang, H., “Octopus-inspired assembly of nanosucker arrays for dry/wet adhesion,” ACS Nano 11(6), 53325338 (2017). doi: 10.1021/acsnano.7b00809.CrossRefGoogle ScholarPubMed
Li, W., Hu, X., Liu, H., Tian, J., Li, L., Luo, B., Zhou, C. and Lu, L., “3D light-curing printing to construct versatile octopus-bionic patches,” J. Mater. Chem. B 11(22), 50105020 (2023). doi: 10.1039/d3tb00590a.CrossRefGoogle ScholarPubMed
Chun, S., Kim, D. W., Baik, S., Lee, H. J., Lee, J. H., Bhang, S. H. and Pang, C., “Conductive and stretchable adhesive electronics with miniaturized octopus-like suckers against dry/wet skin for biosignal monitoring,” Adv. Funct. Mater. 28(52), 1805224 (2018). doi: 10.1002/adfm.201805224.CrossRefGoogle Scholar
Hwang, G. W., Lee, H. J., Kim, D. W., Yang, T‐H. and Pang, C., “Soft microdenticles on artificial octopus sucker enable extraordinary adaptability and wet adhesion on diverse nonflat surfaces,” Adv. Sci. 9(31), 2202978 (2022). doi: 10.1002/advs.202202978.CrossRefGoogle ScholarPubMed
Hernandez, A. M., Sandoval, J. A., Yuen, M. C. and Wood, R. J., “Bioinspired surface structures for added shear stabilization in suction discs,” Sci. Rep. 15(1), 960 (2025). doi: 10.1038/s41598-024-82221-0.CrossRefGoogle ScholarPubMed
Lee, H., Um, D‐S., Lee, Y., Lim, S., Kim, H‐j. and Ko, H., “Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes,” Adv. Mater. 28(34), 74577465 (2016). doi: 10.1002/adma.201601407.CrossRefGoogle ScholarPubMed
Su, L., Jin, D. D., Pan, C. F., Xia, N., Chan, K. F., Iacovacci, V., Xu, T., Du, X. and Zhang, L., “A mobile magnetic pad with fast light-switchable adhesion capabilities,” Bioinspir. Biomim. 16(5), 055005 (2021). doi: 10.1088/1748-3190/ac114a.CrossRefGoogle ScholarPubMed
Lee, Y. S., Kang, G. R., Kim, M.-S., Kim, D. W. and Pang, C., “Softened double-layer octopus-like adhesive with high adaptability for enhanced dynamic dry and wet adhesion,” Chem. Eng. J. 468, 143792 (2023). doi: 10.1016/j.cej.2023.143792.CrossRefGoogle Scholar
Chen, T. G., Miller, B., Winston, C., Schneider, S., Bylard, A., and Pavone, M.. “ReachBot: A Small Robot with Exceptional Reach for Rough Terrain.” In: 2022 International Conference on Robotics and Automation (ICRA) (2022) pp. 45174523.Google Scholar
Wang, S., Jiang, H., Myung Huh, T., Sun, D., Ruotolo, W., Miller, M., Roderick, W. R. T., Stuart, H. S. and Cutkosky, M. R., “Spinyhand: Contact load sharing for a human-scale climbing robot,” J. Mech. Robot. 11(3), 031009 (2019).10.1115/1.4043023CrossRefGoogle Scholar
Nagaoka, K., Minote, H., Maruya, K., Shirai, Y., Yoshida, K., Hakamada, T., Sawada, H. and Kubota, T., “Passive spine gripper for free-climbing robot in extreme terrain,” IEEE Robot. Autom. Lett. 3(3), 17651770 (2018). doi: 10.1109/LRA.2018.2794517.CrossRefGoogle Scholar
Parness, A., Frost, M., Thatte, N., King, J. P., Witkoe, K., Nevarez, M., Garrett, M., Aghazarian, H. and Kennedy, B., “Gravity-independent rock-climbing robot and a sample acquisition tool with microspine grippers,” J. Field Robot. 30(6), 897915 (2013).10.1002/rob.21476CrossRefGoogle Scholar
Wang, S., Jiang, H. and Cutkosky, M. R., “Design and modeling of linearly-constrained compliant spines for human-scale locomotion on rocky surfaces,” Int. J. Robot. Res. 36(9), 985999 (2017).10.1177/0278364917720019CrossRefGoogle Scholar
Li, X., Chen, W., Li, X., Hou, X., Zhao, Q., Meng, Y., and Tian, Y.An underactuated adaptive microspines gripper for rough wall,” Biomimetics 8(1), 39 (2023). doi: 10.3390/biomimetics8010039.CrossRefGoogle ScholarPubMed
Park, W., Park, S., An, H., Seong, M., Bae, J. and Jeong, H. E., “A sensorized soft robotic hand with adhesive fingertips for multimode grasping and manipulation,” Soft Robot. 11(4), 698708 (2024). doi: 10.1089/soro.2023.0099.CrossRefGoogle ScholarPubMed
Yu, Z., Fu, J., Ji, Y., Zhao, B., and Ji, A., “Design of a variable stiffness gecko-inspired foot and adhesion performance test on flexible surface,” Biomimetics 7(3), 125 (2022). doi: 10.3390/biomimetics7030125.CrossRefGoogle ScholarPubMed
Wang, B., Wang, Z., Song, Y., Zong, W., Zhang, L., Ji, K., Manoonpong, P. and Dai, Z., “A neural coordination strategy for attachment and detachment of a climbing robot inspired by gecko locomotion,” Cyborg Bionic Syst. 4, 0008 (2023). doi: 10.34133/cbsystems.0008.CrossRefGoogle ScholarPubMed
Nguyen, V., “Picking food by robot hand with tree-frog like pad in various wet conditions,” Eng. Res. Express 6(1), 015086 (2024). doi: 10.1088/2631-8695/ad17e4.CrossRefGoogle Scholar
Parness, A., Hilgendorf, T., Daniel, P., Frost, M., White, V. and Kennedy, B., “Controll able ON-OFF adhesion for Earth orbit grappling applications,” in IEEE Aerosp. Conf., (2013), pp. 1–11. doi: 10.1109/AERO.2013.6497364.Google Scholar
Chen, G., Wu, J., Zhang, Z., Zhang, B., Chu, Z. and Cui, J., “A soft robotic gripper with a belt loop actuated adhesion design for gentle handling of fragile object,” IEEE Robot. Autom. Lett. 9(8), 67846791 (2024). doi: 10.1109/LRA.2024.3414248.CrossRefGoogle Scholar
Farzam, M., Beitollahpoor, M. and Pesika, N. S., “Nature-inspired directional microneedle structures for reversible gripping on skin and fibrous materials,” Adv. Eng. Mater. 26(8), 2400149 (2024). doi: 10.1002/adem.202400149.CrossRefGoogle Scholar
Ben-Larbi, M. K., Hensel, , Atzeni, G., Arzt, E. and Stoll, E., “Orbital debris removal using micropatterned dry adhesives: Review and recent advances,” Prog. Aerosp. Sci. 134, 100850 (2022). doi: 10.1016/j.paerosci.2022.100850.CrossRefGoogle Scholar
Wu, X., Deng, J., Jian, W., Yang, Y., Shao, H., Zhou, X., Xiao, Y., Ma, J., Zhou, Y., Wang, R. and Li, H., “A bioinspired switchable adhesive patch with adhesion and suction mechanisms for laparoscopic surgeries,” Mater. Today Bio 27, 101142 (2024). doi: 10.1016/j.mtbio.2024.101142.CrossRefGoogle ScholarPubMed
Chen, G., Zhang, Z., Wu, J., Zhang, B., Chu, Z. and Cui, J., “A novel methodology for intrinsic adhesion state sensing in gecko-inspired directional dry adhesives,” Sensor Actuat. A Phys. 374, 115492 (2024). doi: 10.1016/j.sna.2024.115492.CrossRefGoogle Scholar
Kim, D. G., Je, H., Hart, A. J. and Kim, S., “Additive manufacturing of flexible 3D surface electrodes for electrostatic adhesion control and smart robotic gripping,” Friction 11(11), 19741986 (2023). doi: 10.1007/s40544-022-0691-9.CrossRefGoogle Scholar
Krahn, J., Liu, Y., Sadeghi, A. and Menon, C., “A tailless timing belt climbing platform utilizing dry adhesives with mushroom caps,” Smart Mater. Struct. 20(11), 115021 (2011). doi: 10.1088/0964-1726/20/11/115021.CrossRefGoogle Scholar
Breckwoldt, W., Kathryn, A., Daltorio, A., Heepe, L., Horchler, A.D., Gorb, S.N., and Quinn, R.D.. Walking Inverted on Ceilings with Wheel-legs and Micro-structured Adhesives”. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015) pp. 33083313.10.1109/IROS.2015.7353837CrossRefGoogle Scholar
Li, H., Sun, X., Chen, Z., Zhang, L., Wang, H. and Wu, X., “Design of a wheeled wall climbing robot based on the performance of bio-inspired dry adhesive material,” Robotica 40(3), 611624 (2022). doi: 10.1017/S0263574721000710.CrossRefGoogle Scholar
Wang, B., Weng, Z., Wang, H., Wang, S., Wang, Z., Dai, Z. and Jusufi, A., “Wall-climbing performance of gecko-inspired robot with soft feet and digits enhanced by gravity compensation,” Bioinspir. Biomim. 19(5), 056001 (2024). doi: 10.1088/1748-3190/ad5899.CrossRefGoogle ScholarPubMed
Ko, H., Yi, H. and Jeong, H. E., “Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D printing (UNIclimb),” Int. J. Precis. Eng. Manuf. Green Technol. 4(3), 273280 (2017). doi: 10.1007/s40684-017-0033-y.CrossRefGoogle Scholar
Xiao, J., Hao, L., Xu, H., Zhang, X., Li, X. and Li, Z., “MST-Q: Micro suction tape quadruped robot with high payload capacity,” IEEE Robot. Autom. Lett. 8(11), 73047311 (2023). doi: 10.1109/LRA.2023.3316092.Google Scholar
Chen, Y., Doshi, N. and Wood, R. J., “Inverted and inclined climbing using capillary adhesion in a quadrupedal insect-scale robot,” IEEE Robot. Autom. Lett. 5(3), 48204827 (2020). doi: 10.1109/LRA.2020.3003870.CrossRefGoogle Scholar
Henrey, M., Ahmed, A., Boscariol, P., Shannon, L. and Menon, C., “Abigaille-III: A versatile, bioinspired hexapod for scaling smooth vertical surfaces,” J. Bionic Eng. 11(1), 117 (2014).10.1016/S1672-6529(14)60015-9CrossRefGoogle Scholar
Birkmeyer, P., Gillies, A.G., and Fearing, R.S.. Dynamic Climbing of Near-vertical Smooth Surfaces”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012) pp. 286292.10.1109/IROS.2012.6385775CrossRefGoogle Scholar
Liu, Y., Kim, H. G. and Seo, T. W., “AnyClimb: A new wall-climbing robotic platform for various curvatures,” IEEE/ASME Trans. Mechatron. 21(4), 18121821 (2016). doi: 10.1109/TMECH.2016.2529664.CrossRefGoogle Scholar
Wu, Y., Dong, X., Kim, J.-K., Wang, C. and Sitti, M., “Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces,” Sci. Adv. 8(21), eabn3431 (2022). doi: 10.1126/sciadv.abn3431.CrossRefGoogle ScholarPubMed
Zhao, D., Luo, H., Tu, Y., Meng, C. and Lam, T. L., “Snail-inspired robotic swarms: A hybrid connector drives collective adaptation in unstructured outdoor environments,” Nat. Commun. 15(1), 3647 (2024). doi: 10.1038/s41467-024-47788-2.CrossRefGoogle ScholarPubMed
Dharmawan, A. G., Xavier, P., Hariri, H. H., Soh, G. S., Baji, A., Bouffanais, R., Foong, S., Low, H. Y. and Wood, K. L., “Design, modeling, and experimentation of a bio-inspired miniature climbing robot with bilayer dry adhesives,” J. Mech. Robot. Trans. ASME 11(2), 020902 (2019). doi: 10.1115/1.4042457.CrossRefGoogle Scholar
Okada, N., Yamanaka, K., and Kondo, E., “A Wall Climbing Robot with Simple Suckers,” In: 2009 ICCAS-SICE (2009) pp. 56915694.Google Scholar
Tang, D., Cui, M.Y., Zhang, J.L., Chu, J.F., and Li, B., “Design of Structure and Drive System for Pneumatic Glass Curtain Wall Cleaning Robot,” In: Industrial Instrumentation and Control Systems II, (2013) pp. PTS1-PTS1–3-3, 10.4028/www.scientific.net/AMM.336-338.1068.Google Scholar
Lei, C., “Design of suckers controlling distributor for aircraft skin detection robot,” Electron. Optics Control 24(1), 96101 (2017).Google Scholar
Wang, S., Li, L., Zhao, W., Zhang, Y. and Wen, L., “A biomimetic remora disc with tunable, reversible adhesion for surface sliding and skimming,” Bioinspir. Biomim. 17(3), 036001 (2022). doi: 10.1088/1748-3190/ac4e7a.CrossRefGoogle ScholarPubMed
Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Mattoli, V. and Cutkosky, M. R., “Whole body adhesion: Hierarchical, directional and distributed control of adhesive forces for a climbing robot,” in Proceedings 2007 IEEE International Conference on Robotics and Automation, (2007), pp. 1268–1273. doi: 10.1109/ROBOT.2007.363159.Google Scholar
Sangbae Kim, , Spenko, M., Trujillo, S., Heyneman, B., Santos, D. and Cutkosky, M. R., “Smooth vertical surface climbing with directional adhesion,” IEEE Trans. Robot. 24(1), 6574 (2008). doi: 10.1109/TRO.2007.909786.CrossRefGoogle Scholar
Birkmeyer, P., Gillies, A. G. and Fearing, R. S., “Dynamic climbing of near-vertical smooth surfaces,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2012), pp. 286–292. doi: 10.1109/IROS.2012.6385775.Google Scholar
Li, X., Bai, P., Li, X., Li, L., Li, Y., Lu, H., Ma, L., Meng, Y. and Tian, Y., “Robust scalable reversible strong adhesion by gecko-inspired composite design,” Friction 10(8), 11921207 (2022). doi: 10.1007/s40544-021-0522-4.CrossRefGoogle Scholar
Haomachai, W., Dai, Z. and Manoonpong, P., “Transition gradient from standing to traveling waves for energy-efficient slope climbing of a gecko-inspired robot,” IEEE Robot. Autom. Lett. 9(3), 24232430 (2024). doi: 10.1109/LRA.2024.3355631.CrossRefGoogle Scholar