Hostname: page-component-cb9f654ff-c75p9 Total loading time: 0 Render date: 2025-08-28T13:50:13.022Z Has data issue: false hasContentIssue false

A comparison of monolithic 3D-printed tendon-driven continuum robot designs

Published online by Cambridge University Press:  26 August 2025

Clara G. Kierbel
Affiliation:
LARM2: Robotics and Mechatronics Laboratory, Department of Industrial Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
Nicola Perugini
Affiliation:
LARM2: Robotics and Mechatronics Laboratory, Department of Industrial Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
Matteo Russo*
Affiliation:
LARM2: Robotics and Mechatronics Laboratory, Department of Industrial Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
*
Corresponding author: Matteo Russo; Email: matteo.russo@uniroma2.it

Abstract

This paper presents four new monolithic continuum robot designs that can be 3D printed in a single piece and with TPU or similar elastic filaments for either educational or experimental applications. Similar tendon-driven continuum robots are usually made of a flexible backbone (often in NiTi alloys) and rigid vertebrae, with tens of components in a robot segment resulting in time-consuming manual assembly and high costs. Conversely, the proposed designs achieve equivalent functionality while avoiding the manufacturing challenges. Additionally, by removing the need for coupled features for assembly and 3D-printing backbones and vertebrae as a single part, new geometries are possible and can be explored to tailor robot performance to specific requirements. To validate the proposed design, four sample prototypes have been manufactured and experimentally tested. The obtained results, when compared to the piecewise constant curvature model, demonstrate a 3.06% tip positioning error and limited reduction of the workspace area of 23.07%, which compares favorably to similar but more expensive and complex tendon-driven robots.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors contributed equally.

References

Dupont, P. E., Simaan, N., Choset, H. and Rucker, H., “Continuum robots for medical interventions,” Proc. IEEE 110(7), 847870 (2022). doi: 10.1109/jproc.2022.3141338.CrossRefGoogle ScholarPubMed
Burgner-Kahrs, J., Rucker, D. C. and Choset, H., “Continuum robots for medical applications: A survey,” IEEE Trans. Rob. 31(6), 12611280 (2015). doi: 10.1109/tro.2015.2489500.CrossRefGoogle Scholar
Yamauchi, Y., Ambe, Y., Nagano, H., Konyo, M., Bando, Y., Ito, E., Arnold, S., Yamazaki, K., Itoyama, K., Okatani, T., Okuno, H. G. and Tadokoro, S., “Development of a continuum robot enhanced with distributed sensors for search and rescue,” ROBOMECH J. 9(1) (2022). doi: 10.1186/s40648-022-00223-x.CrossRefGoogle Scholar
Der Maur, P. A., Djambazi, B., Haberthür, Y., Hörmann, P., Kübler, A., Lustenberger, M., Sigrist, S., Vigen, O., Förster, J., Achermann, F., Hampp, E., Katzschmann, R. K. and Siegwart, R. , Roboa: Construction and Evaluation of a Steerable Vine Robot for Search and Rescue Applications. [online] IEEE Xplore (2021). doi:10.1109/robosoft51838.2021.9479192.CrossRefGoogle Scholar
Mohammad, A., Russo, M., Fang, Y., Dong, X., Axinte, D.ş and Kell, J., “An efficient follow-the-leader strategy for continuum robot navigation and coiling,” IEEE Rob. Autom. Lett. 6(4), 74937500 (2021). doi: 10.1109/lra.2021.3097265.CrossRefGoogle Scholar
Dong, X., Wang, M., Mohammad, A., Ba, W., Russo, M., Norton, A., Kell, J. and Axinte, D., “Continuum robots collaborate for safe manipulation of high-temperature flame to enable repairs in challenging environments,” IEEE/ASME Trans. Mechatron. 27(5), 42174220 (2022). doi: 10.1109/TMECH.2021.3138222.CrossRefGoogle Scholar
Yeshmukhametov, A., Koganezawa, K., Yamamoto, Y., Buribayev, Z., Mukhtar, Z. and Amirgaliyev, Y., “Development of continuum robot arm and gripper for harvesting cherry tomatoes,” Appl. Sci. 12(14), 6922 (2022). doi: 10.3390/app12146922.CrossRefGoogle Scholar
Shintake, J., Cacucciolo, V., Floreano, D. and Shea, H., “Soft robotic grippers,” Adv. Mater. 30(29), 1707035 (2018). doi: 10.1002/adma.201707035.CrossRefGoogle Scholar
Homberg, B. S., Katzschmann, R. K., Dogar, M. R. and Rus, D., Haptic identification of objects using a modular soft robotic gripper. [online] IEEE Xplore (2015). doi:10.1109/IROS.2015.7353596.CrossRefGoogle Scholar
Russo, M., Sadati, S. M. H., Dong, X., Mohammad, A., Walker, I. D., Bergeles, C., Xu, K. and Axinte, D. A., “Continuum robots: An overview,” Adv. Intell. Syst. 5(5), 2200367 (2023). doi: 10.1002/aisy.202200367.CrossRefGoogle Scholar
Mitros, Z., Sadati, S. M. H., Henry, R., Da Cruz, L. and Bergeles, C., “From theoretical work to clinical translation: Progress in concentric tube robots,” Ann. Rev. Control Rob. Auton. Syst. 5(1) (2021). doi: 10.1146/annurev-control-042920-014147.Google Scholar
Alfalahi, H., Renda, F. and Stefanini, C., “Concentric tube robots for minimally invasive surgery: Current applications and future opportunities,” IEEE Trans. Med. Rob. Bionics 2(3), 410424 ( 2020). doi: 10.1109/tmrb.2020.3000899.CrossRefGoogle Scholar
Li, M., Kang, R., Geng, S. and Guglielmino, E., “Design and control of a tendon-driven continuum robot,” Trans. Inst. Meas. Control 40(11), 32633272 (2018). doi: 10.1177/0142331216685607.CrossRefGoogle Scholar
Pachouri, V. and Pathak, P. M., “Design and modeling of a planar-to-spatial tendon-driven continuum manipulator subjected to uncertain forces,” Rob. Auton. Syst. 170, 104551104551 (2023). doi: 10.1016/j.robot.2023.104551.CrossRefGoogle Scholar
Greer, J., Morimoto, T., Okamura, A. and Hawkes, E., “Series Pneumatic Artificial Muscles (spams) and Application to a Soft Continuum Robot,” 2017 IEEE International Conference on Robotics and Automation (ICRA) (2017).CrossRefGoogle Scholar
Giannaccini, M. E., Xiang, C., Atyabi, A., Theodoridis, T., Nefti-Meziani, S. and Davis, S., “Novel design of a soft lightweight pneumatic continuum robot arm with decoupled variable stiffness and positioning,” Soft Rob. 5(1), 5470 (2018). doi: 10.1089/soro.2016.0066.CrossRefGoogle ScholarPubMed
Kim, K.-Y., Woo, H.-S. and Suh, J., Design and Evaluation of a Continuum Robot with Discreted link joints for Cardiovascular Interventions (2018). doi: 10.1109/biorob.2018.8487633 CrossRefGoogle Scholar
Guan, Q., Stella, F., Santina, C. D., Leng, J. and Hughes, J. J, “Trimmed helicoids: An architectured soft structure yielding soft robots with high precision, large workspace, and compliant interactions,” Npj Rob. 1(1) (2023). doi: 10.1038/s44182-023-00004-7.Google Scholar
Blumenschein, L. H., Coad, M. M., Haggerty, D. A., Okamura, A. M. and Hawkes, E. W., “Design, modeling, control, and application of everting vine robots,” Front. Rob. AI 7 (2020). doi: 10.3389/frobt.2020.548266.Google ScholarPubMed
Ataka, A., Abrar, T., Putzu, F., Godaba, H. and Althoefer, K., “Model-based pose control of inflatable eversion robot with variable stiffness,” IEEE Rob. Autom. Lett. [online] 5(2), 33983405 (2020). doi: 10.1109/LRA.2020.2976326.CrossRefGoogle Scholar
Song, Z., Wang, Z., Liu, B., Song, Y. and Zhang, X., “A soft gripper based on pneunets structure with stiffness-variable-enhanced load capacity for object grasping,” Sens. Actuators A Phys., 116253116253 (2025). doi: 10.1016/j.sna.2025.116253.CrossRefGoogle Scholar
Yoon, J. and Yun, D., “Geometrical parameters investigation of a zig-zag soft pneumatic actuators,” Adv. Eng. Mater. 26(20) (2024). doi: 10.1002/adem.202400560.CrossRefGoogle Scholar
Troncoso, D. A., Robles-Linares, J. A., Russo, M., Elbanna, M. A., Wild, S., Dong, X., Mohammad, A., Kell, J., Norton, A. D. and Axinte, D., “A continuum robot for remote applications: From industrial to medical surgery with slender continuum robots,” IEEE Rob. Autom. Mag. 30(3), 94105 (2023). doi: 10.1109/MRA.2022.3223220.CrossRefGoogle Scholar
Grassmann, R. M., Lilge, S., Le, P. and Burgner-Kahrs, J., “Ctcr Prototype Development: An Obstacle in the Research Community?,” Robotics Retrospectives Workshop at RSS (2020).Google Scholar
Zhu, B., Zhang, X., Zhang, H., Liang, J., Zang, H., Li, H. and Wang, R., “Design of compliant mechanisms using continuum topology optimization: A review,” Mech. Mach. Theory 143, 103622 (2020). doi: 10.1016/j.mechmachtheory.2019.103622.CrossRefGoogle Scholar
Khalil, T. A., Habib, S., Seadby, S. G. and Maged, S. A., “A structural optimization analysis of cable-driven soft manipulator,” Int. J. Adv. Rob. Syst. 21(2) (2024). doi: 10.1177/17298806241246886.Google Scholar
Clark, A. B., Mathivannan, V. and Rojas, N., “A continuum manipulator for open-source surgical robotics research and shared development,” IEEE Trans. Med. Rob. Bionics 3(1), 277280 (2021). doi: 10.1109/tmrb.2020.3041391.CrossRefGoogle Scholar
Sitler, J. L. and Wang, L., “A modular open-source continuum manipulator for underwater remotely operated vehicles,” J. Mech. Rob. 14(6) (2022). doi: 10.1115/1.4054309.Google Scholar
Beaudette, A., Gerez, L., Holland, D., Berdnt, S. and Park, E. J., Soft Robotics Toolkit. [online] softroboticstoolkit.com. Available at https://softroboticstoolkit.com/home Google Scholar
Holland, D. P., Park, E. J., Polygerinos, P., Bennett, G. J. and Walsh, C. J., “The soft robotics toolkit: Shared resources for research and design,” Soft Rob. 1(3), 224230 (2014). doi: 10.1089/soro.2014.0010.CrossRefGoogle Scholar
Open Continuum Robotics website [online] Available at: https://www.opencontinuumrobotics.com Google Scholar
Grassmann, R. M., Shentu, C., Hamoda, T., Dewi, P. T. and Burgner-Kahrs, J., “Open continuum robotics–one actuation module to create them all,” Front. Rob. AI 11 (2024). doi: 10.3389/frobt.2024.1272403.Google Scholar
Graule, M. A., Teeple, C. B., mccarthy, T. P., Kim, G. R., St. Louis, R. C. and Wood, R. J. , Somo: Fast and Accurate Simulations of Continuum Robots in Complex Environments. [online] IEEE Xplore (2021). doi: 10.1109/IROS51168.2021.9636059.CrossRefGoogle Scholar
Perugini, N. and Russo, M., “A monolithic tendon-driven continuum robot design for easy 3D printing and assembly,” Mech. Mach. Sci., 215223 (2024). doi: 10.1007/978-3-031-64553-2_25.CrossRefGoogle Scholar
Raimondi, L., Russo, M., Dong, X. and Axinte, D., “Understanding friction and superelasticity in tendon-driven continuum robots,” Mechatronics 104, 103241 (2024). doi: 10.1016/j.mechatronics.2024.103241.CrossRefGoogle Scholar
Bishop, C., Russo, M., Dong, X. and Axinte, D., “A novel underactuated continuum robot with shape memory alloy clutches,” IEEE Trans. Mechatron. 27(6), 53395350 (2022). doi: 10.1109/TMECH.2022.3179812.CrossRefGoogle Scholar
Barrientos-Diez, J., Russo, M., Dong, X., Axinte, D. and Kell, J., “Asymmetric continuum robots,” IEEE Rob. Autom. Lett. 8(3), 12791286 (2023). doi: 10.1109/LRA.2023.3238890.CrossRefGoogle Scholar
Fang, Y., Dong, X., Mohammad, A. and Axinte, D., “Design and control of a multiple-section continuum robot with a hybrid sensing system,” IEEE/ASME Trans. Mechatron. 28(3), 15221533 (2023). doi: 10.1109/tmech.2022.3229.CrossRefGoogle Scholar
Supplementary material: File

Kierbel et al. supplementary material 1

Kierbel et al. supplementary material
Download Kierbel et al. supplementary material 1(File)
File 1.4 MB
Supplementary material: File

Kierbel et al. supplementary material 2

Kierbel et al. supplementary material
Download Kierbel et al. supplementary material 2(File)
File 144.7 KB
Supplementary material: File

Kierbel et al. supplementary material 3

Kierbel et al. supplementary material
Download Kierbel et al. supplementary material 3(File)
File 782.4 KB
Supplementary material: File

Kierbel et al. supplementary material 4

Kierbel et al. supplementary material
Download Kierbel et al. supplementary material 4(File)
File 400.9 KB
Supplementary material: File

Kierbel et al. supplementary material 5

Kierbel et al. supplementary material
Download Kierbel et al. supplementary material 5(File)
File 110.4 KB