No CrossRef data available.
Published online by Cambridge University Press: 11 July 2025
In recent years, the removal of orbital debris has become an increasingly urgent task due to advancements in human space exploration. Capturing space debris through caging manipulation offers notable advantages in terms of robustness and controllability. This paper proposes a configuration-based caging manipulation design method for a cable-driven flexible arm. First, the cable-driven flexible arm with multi self-lockable links is introduced. To quantify the caging configurations formed by different self-lockable link selections, a novel planar caging quality metric is then presented for arbitrary planar objects. Using this metric, a caging design method is developed for the flexible arm to conduct caging manipulations. Finally, the caging manipulation strategies are discussed with lock selection maps for different objects, and a robust caging strategy considering uncertainty is further explored. Simulation and experimental results validate the effectiveness of the proposed caging design method and demonstrate better performance compared to conventional caging methods.