Hostname: page-component-54dcc4c588-42vt5 Total loading time: 0 Render date: 2025-09-25T09:52:41.235Z Has data issue: false hasContentIssue false

Design and analysis of an adaptive cable-driven knee unloading exoskeleton based on a rhombus linkage mechanism

Published online by Cambridge University Press:  25 September 2025

Yu Guo
Affiliation:
School of Mechanical Engineering, Yanshan University, Qinhuangdao, China Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, China
Xiao Yang
Affiliation:
School of Mechanical Engineering, Yanshan University, Qinhuangdao, China Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, China
Ziming Chen*
Affiliation:
School of Mechanical Engineering, Yanshan University, Qinhuangdao, China Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, China
Xiangyu Yan
Affiliation:
School of Mechanical Engineering, Yanshan University, Qinhuangdao, China Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, China
Fei Liu
Affiliation:
Department of Orthopaedics, First Hospital of Qinhuangdao, Qinhuangdao, China
*
Corresponding author: Ziming Chen; Email: chenzm@ysu.edu.cn

Abstract

Biomechanical intervention on lower limb joints using exoskeletons to reduce joint loads and provide walking assistance has become a research hotspot in the fields of rehabilitation and elderly care. To address the challenges of human-exoskeleton (H-E) kinematic compatibility and knee joint unloading demands, this study proposes a novel rhombus linkage exoskeleton mechanism capable of adaptive knee motion without requiring precise alignment with the human knee axis. The exoskeleton is driven by a Bowden cable system to provide thigh support, thereby achieving effective knee joint unloading. Based on the screw theory, the degrees of freedom (DOF) of the exoskeleton mechanism (DOF = 3) and the H-E closed-loop mechanism (DOF = 1) were analyzed, and the kinematic model of the exoskeleton and the H-E closed-loop kinematic model were established, respectively. A mechanical model of the driving system was developed, and a simulation was conducted to validate the accuracy of the model. The output characteristics of the cable-driven system were investigated under varying bending angles and bending times. A prototype was fabricated and tested in wearable scenarios. The experimental results demonstrate that the exoskeleton system exhibits excellent biocompatibility and weight-bearing support capability. Compatibility tests confirm that the exoskeleton does not interfere with human motion. Through human-in-the-loop optimization, the optimal Bowden cable output force profile was obtained, which minimizes gait impact while achieving a peak support force of 195.8 N. Further validation from wear trials with five subjects confirms the system’s low interference with natural human motion (maximum lower-limb joint angle deviation of only $8^\circ$).

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chen, B., Zi, B., Wang, Z., Qin, L. and Liao, W.-H., “Knee exoskeletons for gait rehabilitation and human performance augmentation: A state-of-the-art,” Mech. Mach. Theory 134, 499511 (2019).10.1016/j.mechmachtheory.2019.01.016CrossRefGoogle Scholar
Sampath, S. J. P., Venkatesan, V., Ghosh, S. and Kotikalapudi, N., “Obesity, metabolic syndrome, and osteoarthritis-an updated review,” Curr. Obes. Rep. 12(3), 308331 (2023).10.1007/s13679-023-00520-5CrossRefGoogle ScholarPubMed
March, L., Cross, M., Lo, C., Arden, N. K., Gates, L., Leyland, K. M., Hawker, G., King, L. and Leyland, K., “Osteoarthritis: A Serious Disease, (2016). Submitted to the U.S. Food and Drug Administration. https://www.oarsi.org/sites/default/files/docs/2016/oarsi_white_paper_oa_serious_disease_121416_1.pdf Google Scholar
Budarick, A. R., MacKeil, B. E., Fitzgerald, S. and Cowper-Smith, C. D., “Design evaluation of a novel multicompartment unloader knee brace,” J. Biomech. Eng. 142(1), 014502 (2020).10.1115/1.4044818CrossRefGoogle ScholarPubMed
Balser, F., Desai, R., Ekizoglou, A. and Bai, S., “A novel passive shoulder exoskeleton designed with variable stiffness mechanism,” IEEE Robot. Autom. Lett. 7(2), 27482754 (2022).10.1109/LRA.2022.3144529CrossRefGoogle Scholar
Liang, R., Xu, G., Li, M., He, B. and Khalique, U., “Fusing topology optimization and pseudo-rigid-body method for the development of a finger exoskeleton,” IEEE Robot. Autom. Lett. 7(2), 17211728 (2022).10.1109/LRA.2021.3114418CrossRefGoogle Scholar
Sha, L., Lin, A., Zhao, X. and Kuang, S., “A topology optimization method of robot lightweight design based on the finite element model of assembly and its applications,” Sci. Prog. 103(3), 116 (2020).10.1177/0036850420936482CrossRefGoogle ScholarPubMed
Pérez Vidal, A. F., Morales, J. Y. R., Torres, G. O., Sorcia Vázquez, F. d. J., Rojas, A. C., Mendoza, J. A. B. and Rodríguez Cerda, J. C., “Soft exoskeletons: Development, requirements, and challenges of the last decade,” Actuators 10(7), 166 (2021).10.3390/act10070166CrossRefGoogle Scholar
Koo, I., Yun, C., Costa, M. V. O., Scognamiglio, J. V. F., Yangali, T. A., Park, D. and Cho, K. J., “Development of a Meal Assistive Exoskeleton Made of Soft Materials for Polymyositis Patients,” In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2014) pp. 542547.Google Scholar
Tricomi, E., Lotti, N., Missiroli, F., Zhang, X., Xiloyannis, M., Muller, T., Crea, S., Papp, E., Krzywinski, J., Vitiello, N. and Masia, L., “Underactuated soft hip exosuit based on adaptive oscillators to assist human locomotion,” IEEE Robot. Autom. Lett. 7(2), 936943 (2022).10.1109/LRA.2021.3136240CrossRefGoogle Scholar
Asbeck, A. T., De Rossi, S. M. M., Holt, K. G. and Walsh, C. J., “A biologically inspired soft exosuit for walking assistance,” Int. J. Robot. Res. 34(6), 744762 (2015).10.1177/0278364914562476CrossRefGoogle Scholar
Zhou, Y. M., Hohimer, C. J., Young, H. T., McCann, C. M., Pont-Esteban, D., Civici, U. S., Jin, Y., Murphy, P., Wagner, D., Cole, T., Phipps, N., Cho, H., Bertacchi, F., Pignataro, I., Proietti, T. and Walsh, C. J., “A portable inflatable soft wearable robot to assist the shoulder during industrial work,” Sci. Robot. 9(91), eadi2377 (2024).10.1126/scirobotics.adi2377CrossRefGoogle ScholarPubMed
Veale, A. J., Staman, K. and van der Kooij, H., “Soft, wearable, and pleated pneumatic interference actuator provides knee extension torque for sit-to-stand,” Soft Robot. 8(1), 2843 (2021).10.1089/soro.2019.0076CrossRefGoogle ScholarPubMed
Li, X., Ma, G. and Wang, D., “Research on Bowden cable–fabric force transfer system based on force/displacement compensation and impedance control,” Appl. Sci. 13(21), 11766 (2023).10.3390/app132111766CrossRefGoogle Scholar
Hofmann, U. A. T., Butzer, T., Lambercy, O. and Gassert, R., “Design and evaluation of a Bowden-cable-based remote actuation system for wearable robotics,” IEEE Robot. Autom. Lett. 3(3), 21012108 (2018).10.1109/LRA.2018.2809625CrossRefGoogle Scholar
Tan, K., Shi, H., Mei, X., Geng, T. and Yang, J., “Control of force transmission for cable-driven actuation system based on modified friction model with compensation parameters,” Control Eng. Pract. 151, 106035 (2024).10.1016/j.conengprac.2024.106035CrossRefGoogle Scholar
Xu, M., Zhou, Z., Wang, Z., Ruan, L., Mai, J. and Wang, Q., “Bioinspired cable-driven actuation system for wearable robotic devices: Design, control, and characterization,” IEEE Trans. Robot. 40, 520539 (2024).10.1109/TRO.2023.3324200CrossRefGoogle Scholar
Yang, Y., Yin, J., Qi, W., Li, Z., Zhou, Z., Liu, Z. and Xu, J., “Optimization and synthesis on the dynamics performance of the tensioning and relaxing wearable system in a novel knee exoskeleton using co-simulation,” Robotica 42(11), 116 (2024).10.1017/S0263574724001723CrossRefGoogle Scholar
Nasr, A., Inkol, K. and McPhee, J., “Safety in wearable robotic exoskeletons: Design, control, and testing guidelines,” J. Mech. Robot. 17(5), 05080 (2025).10.1115/1.4066900CrossRefGoogle Scholar
Nazari, F., Mohajer, N., Nahavandi, D., Khosravi, A. and Nahavandi, S., “Applied exoskeleton technology: A comprehensive review of physical and cognitive human–robot interaction,” IEEE Trans. Cogn. Develop. Syst. 15(3), 11021122 (2023).10.1109/TCDS.2023.3241632CrossRefGoogle Scholar
Li, G., Liang, X., Lu, H., Su, T. and Hou, Z.-G., “Development and validation of a self-aligning knee exoskeleton with hip rotation capability,” IEEE Trans. Neural Syst. Rehab. Eng. 32, 472481 (2024).10.1109/TNSRE.2024.3354806CrossRefGoogle ScholarPubMed
Cempini, M., De Rossi, S. M. M., Lenzi, T., Vitiello, N. and Carrozza, M. C., “Self-alignment mechanisms for assistive wearable robots: A kinetostatic compatibility method,” IEEE Trans. Robot. 29(1), 236250 (2013).10.1109/TRO.2012.2226381CrossRefGoogle Scholar
Yang, X., Guo, S., Wang, P., Wu, Y., Niu, L. and Liu, D., “Design and optimization analysis of an adaptive knee exoskeleton,” Chin. J. Mech. Eng. 37(1), 104 (2024).10.1186/s10033-024-01084-8CrossRefGoogle Scholar
Lee, K. M. and Guo, J., “Kinematic and dynamic analysis of an anatomically based knee joint,” J. Biomech. 43(7), 12311236 (2010).10.1016/j.jbiomech.2010.02.001CrossRefGoogle ScholarPubMed
Williams, A. and Logan, M., “Understanding tibio-femoral motion,” Knee 11(2), 8188 (2004).10.1016/j.knee.2003.12.004CrossRefGoogle ScholarPubMed
Zhou, Y., Shao, Y., Shi, D., Feng, Y., Ding, X. and Zhang, W., “Design and preliminary validation of a compatible lower limb exoskeleton with variable stiffness actuation,” Robotica. 43(5), 116 (2025).10.1017/S0263574725000451CrossRefGoogle Scholar
Wang, D., Lee, K., Guo, J. and Yang, C., “Adaptive knee joint exoskeleton based on biological geometries,” IEEE/ASME Trans. Mechatron. 19(4), 12681278 (2014).10.1109/TMECH.2013.2278207CrossRefGoogle Scholar
Kim, T., Jeong, M. and Kong, K., “Bioinspired knee joint of a lower-limb exoskeleton for misalignment reduction,” IEEE/ASME Trans. Mechatron. 27(3), 12231232 (2022).10.1109/TMECH.2021.3099815CrossRefGoogle Scholar
Li, H., Sui, D., Ju, H., An, Y., Zhao, J. and Zhu, Y., “Mechanical compliance and dynamic load isolation design of lower limb exoskeleton for locomotion assistance,” IEEE/ASME Trans. Mechatron. 27(6), 53925402 (2022).10.1109/TMECH.2022.3181261CrossRefGoogle Scholar
Liu, Z., Han, J., Han, J. and Zhang, J., “Design and evaluation of a lightweight, ligaments-inspired knee exoskeleton for walking assistance,” IEEE Robot. Autom. Lett. 9(10), 84918498 (2024).10.1109/LRA.2024.3438041CrossRefGoogle Scholar
Zhang, J., Zhu, A., Song, J., Bao, B., Su, Y., Xu, P., Zheng, C., Shi, L., Zhang, X. and Li, X., “Parallel elastic self-alignment mechanism enhances energy efficiency and reduces misalignment in a powered knee exoskeleton,” IEEE Trans. Biomed. Eng. 72(2), 528539 (2025).10.1109/TBME.2024.3461880CrossRefGoogle Scholar
Cao, J., Wang, C., Zhang, J., Li, K. and Zhang, J., “A novel design method for the knee joint of the exoskeleton based on the modular wearable sensor,” J. Med. Devices 17(4), 041002 (2023).10.1115/1.4063672CrossRefGoogle Scholar
Stienen, A. H. A., Hekman, E. E. G., van der Helm, F. C. T. and van der Kooij, H., “Self-aligning exoskeleton axes through decoupling of joint rotations and translations,” IEEE Trans. Robot. 25(3), 628633 (2009).10.1109/TRO.2009.2019147CrossRefGoogle Scholar
Choi, B., Lee, Y., Kim, J., Lee, M., Lee, J., Roh, S., Choi, H., Kim, Y. and Choi, J., “A Self-aligning Knee Joint for Walking Assistance Devices,” In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE (2016) pp. 22222227.Google Scholar
Amigo, L. E., Casals, A. and Amat, J., “Design of a 3-DoF Joint System with Dynamic Servo-adaptation in Orthotic Applications,” In: 2011 IEEE International Conference on Robotics and Automation, IEEE (2011) pp. 37003705.Google Scholar
Wu, X., Zhu, A., Dang, D. and Shi, L., “Novel lightweight lower limb exoskeleton design for single-motor sequential assistance of knee & ankle joints in real world,” IEEE Robot. Autom. Lett. 9(3), 23912398 (2024).10.1109/LRA.2024.3354618CrossRefGoogle Scholar
Lee, D., Lee, S. and Young, A. J., “AI-driven universal lower-limb exoskeleton system for community ambulation,” Sci. Adv. 10(51), eadq0288 (2024).10.1126/sciadv.adq0288CrossRefGoogle ScholarPubMed
Molinaro, D. D., Scherpereel, K. L., Schonhaut, E. B., Evangelopoulos, G., Shepherd, M. K. and Young, A. J., “Task-agnostic exoskeleton control via biological joint moment estimation,” Nature 635(8038), 337344 (2024).10.1038/s41586-024-08157-7CrossRefGoogle ScholarPubMed
Ikeuchi, Y., Ashihara, J., Hiki, Y., Kudoh, H. and Noda, T., “Walking Assist Device with Bodyweight Support System,” In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2009) pp. 40734079.Google Scholar
Krut, S., Benoit, M., Dombre, E. and Pierrot, F., “Moonwalker, A Lower Limb Exoskeleton Able to Sustain Bodyweight Using a Passive Force Balancer,” In: 2010 IEEE International Conference on Robotics and Automation,IEEE (2010) pp. 22152220.Google Scholar
Wang, D., Lee, K.-M. and Ji, J., “A passive gait-based weight-support lower extremity exoskeleton with compliant joints,” IEEE Trans. Robot. 32(4), 933942 (2016).10.1109/TRO.2016.2572692CrossRefGoogle Scholar
Rodrigues, L. A. O. and Gonçalves, R. S., “Development of a novel body weight support system for gait rehabilitation,” Robotica 41(4), 12751294 (2023).10.1017/S0263574722001709CrossRefGoogle Scholar
Dereshgİ, H. A.İ, GÖSe, E., DemİR, D. and Ghannam, H., “Restoring mobility and independence: Evaluating the impact of knee exoskeletons in real-world scenarios,” J. Smart Syst. Res. 4(1), 6171 (2023).10.58769/joinssr.1308638CrossRefGoogle Scholar
Zhang, X., Chen, X., Huo, B., Liu, C., Zhu, X., Zu, Y., Wang, X., Chen, X. and Sun, Q., “An integrated evaluation approach of wearable lower limb exoskeletons for human performance augmentation,” Sci. Rep. 13(1), 4251 (2023).10.1038/s41598-023-29887-0CrossRefGoogle ScholarPubMed
Huang, Z., Li, Q. and Ding, H., Theory of Parallel Mechanisms, vol. 6 (Springer Science & Business Media, Dordrecht, Netherlands, 2012).Google Scholar
Rose, J. and Gamble, J. G., Human Walking. 3rd edition (Lippincott Williams & Wilkins, Philadelphia, PA, USA, 2006).Google Scholar
Lovrenovic, Z. and Doumit, M., “Development and testing of a passive walking assist exoskeleton,” Biocybern. Biomed. Eng. 39(4), 9921004 (2019).10.1016/j.bbe.2019.01.002CrossRefGoogle Scholar