Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-10-03T07:18:48.377Z Has data issue: false hasContentIssue false

Design and implementation of a variable stiffness tensegrity-based compliant actuator

Published online by Cambridge University Press:  01 October 2025

Yanwen Liu*
Affiliation:
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
Guangyuan Jin
Affiliation:
Industrial Technology Research Institute of Heilongjiang, Harbin, Heilongjiang, China
Liang Zhou
Affiliation:
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
Hongzhou Jiang
Affiliation:
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
*
Corresponding author: Yanwen Liu; Email: honorlyw@163.com

Abstract

The variable stiffness actuator (VSA) excels at tasks that are challenging for traditional rigid mechanisms to perform. A novel variable stiffness tensegrity-based compliant actuator is proposed, following an analysis of the cons and pros of existing VSAs. The proposed actuator leverages a tensegrity structure to eliminate direct contact between rigid elements, thereby reducing the internal mechanical friction. This leads to low damping and compliant behavior. Additionally, it enables a wide range of stiffness adjustments and decouples rotational stiffness from the rotation angle by utilizing different variants of the mechanically adjustable compliance and controllable equilibrium position actuator (MACCEPA). The stiffness analysis of the single-joint actuator is presented and experimentally validated. This design is then extended to multi-joint mechanism applications, including serial mechanism configuration, wire-driven mechanism configuration, and direct-drive mechanism configuration. An evaluation of the structural characteristics of these three configurations is provided, offering different options for implementing VSAs. The conducted works could provide fresh insights into the field of VSA.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Yu, Z., Fu, J., Yao, B., George, C., Richard, V. and Gan, D.. “Dynamic Modeling and Robust Torque Control of a Discrete Variable Stiffness Actuator.” In: 2023, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE) (2023) pp. V008T08A058.Google Scholar
Fu, J., Yu, Z., Lin, H. and Gan, D., “A novel variable stiffness compliant robotic link based on discrete variable stiffness units for safe human–robot interaction,” J. Mech. Robot. 16(1), 014501 (2024).10.1115/1.4056957CrossRefGoogle Scholar
Shao, Y., Shi, D., Feng, Y., Zhang, W. and Ding, X., “Design and control of a compact variable stiffness actuator based on a cam-circular beam mechanism,” IEEE-ASME T. Mech. 29(6), 41314143 (2024).10.1109/TMECH.2024.3363226CrossRefGoogle Scholar
Li, Z., Chu, X., Hu, X., Zhang, Z., Li, N. and Li, J., “Variable stiffness methods for robots: A review,” Smart Mater. Struct. 33(6), 063002 2024).10.1088/1361-665X/ad0753CrossRefGoogle Scholar
Shan, X., Xu, L. and Li, X., “A variable stiffness design method for soft robotic fingers based on grasping force compensation and linearization,” Robotica 42(6), 20612083 (2024).10.1017/S026357472400081XCrossRefGoogle Scholar
Sun, Y., Piskarev, Y., Hofstetter, E. H., Fischer, C., Boehler, Q., Stárek, Z., Nelson, B. J. and Floreano, D., “Instant variable stiffness in cardiovascular catheters based on fiber jamming,” Sci. Adv. 11(6), eadn1207 (2025).10.1126/sciadv.adn1207CrossRefGoogle ScholarPubMed
Ju, W., Li, B., Kang, R., Zhang, S. and Song, Z., “Design of a torsional compliant mechanism with given discrete torque-deflection points for nonlinear stiffness elastic actuator,” Robotica 41(9), 25712587 (2023).10.1017/S0263574723000528CrossRefGoogle Scholar
Obayashi, N., Junge, K., Singh, P. and Hughes, J., “Online hydraulic stiffness modulation of a soft robotic fish tail for improved thrust and efficiency,” Soft Robot. 12(2), 242252 (2024).Google ScholarPubMed
Zhu, C., Zhou, C., Zou, Q., Wang, X., Deng, L., Wang, J. and Fan, J., “A variable stiffness fishlike propeller with compressible flexible bionic spine,” Ocean Eng. 316, 119780 (2025).10.1016/j.oceaneng.2024.119780CrossRefGoogle Scholar
Zhou, Y., Shao, Y., Shi, D., Feng, Y., Ding, X. and Zhang, W., “Design and preliminary validation of a compatible lower limb exoskeleton with variable stiffness actuation,” Robotica 43(5), 16751690 (2025).10.1017/S0263574725000451CrossRefGoogle Scholar
Quinn, D. B. and Lauder, G. V., “Tunable stiffness in fish robotics: Mechanisms and advantages,” Bioinspir. Biomim. 17(1), 011002 (2021).10.1088/1748-3190/ac3ca5CrossRefGoogle ScholarPubMed
Alandoli, E. A., Fan, Y. and Liu, D., “A review of extensible continuum robots: Mechanical structure, actuation methods, stiffness variability, and control methods,” Robotica 43(2), 764791 (2024).10.1017/S0263574724001966CrossRefGoogle Scholar
Liu, S., Liu, C., Liang, Y., Ren, L. and Ren, L., “Design and control of an untethered robotic tuna based on a hydraulic soft actuator,” IEEE-ASME T. Mech. 30(1), 623633 (2025).10.1109/TMECH.2024.3401111CrossRefGoogle Scholar
Yang, L., Zhang, F. and Fu, Y., “A cable-driven elbow exoskeleton with variable stiffness actuator for upper limb rehabilitation,” Robotica 43(2), 662679 (2025).10.1017/S026357472400211XCrossRefGoogle Scholar
Liao, X., Zhou, C., Cheng, L., Wang, J., Fan, J. and Zhang, Z., “A fast online elastic-spine-based stiffness adjusting mechanism for fishlike swimming,” Soft Robot. 11(6), 935945 (2024).10.1089/soro.2023.0204CrossRefGoogle ScholarPubMed
Fu, J., Yu, Z., Guo, Q., Zheng, L. and Gan, D., “A variable stiffness robotic gripper based on parallel beam with vision-based force sensing for flexible grasping,” Robotica 42(12), 40364054 (2024).10.1017/S026357472300156XCrossRefGoogle Scholar
Zhu, M., Xie, M., Mori, Y., Dai, J., Kawamura, S. and Yue, X., “A variable stiffness soft gripper based on rotational layer jamming,” Soft Robot. 11(1), 8594 (2024).10.1089/soro.2022.0232CrossRefGoogle ScholarPubMed
Li, M., Huang, X., Liu, Q. and Yin, Z., “A variable stiffness bioinspired swallowing gripper based on particle jamming,” Soft Robot. 12(1), 5667 (2025).10.1089/soro.2023.0241CrossRefGoogle ScholarPubMed
Hu, J., Liang, L. and BZeng, “Design, modeling, and testing of a soft actuator with variable stiffness using granular jamming,” Robotica 40(7), 24682484 (2022).10.1017/S0263574721001740CrossRefGoogle Scholar
Lin, B., Song, S. and Wang, J., “Variable stiffness methods of flexible robots for minimally invasive surgery: A review,” Biomim. Intell. Robot. 4(3), (2024).Google Scholar
Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B. and Lefeber, D., “MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot,” Robot. Auton. Syst. 55(10), 761768 (2007).10.1016/j.robot.2007.03.001CrossRefGoogle Scholar
Vanderborght, B., Tsagarakis, N. G., Van Ham, R., Thorson, I. and Caldwell, D. G., “MACCEPA 2.0: Compliant actuator used for energy efficient hopping robot Chobino1D,” Auton. Robot. 31, 5565 (2011).10.1007/s10514-011-9230-7CrossRefGoogle Scholar
Jimenez-Fabian, R., Flynn, L., Geeroms, J., Vitiello, N., Vanderborght, B. and Lefeber, D., “Sliding-bar MACCEPA for a powered ankle prosthesis,” J. Mech. Robot. 7(4), 041011 (2015).10.1115/1.4029439CrossRefGoogle Scholar
Ziegler, M., Hoffmann, M., Carbajal, J. P. and Pfeifer, R.. “Varying Body Stiffness for Aquatic Locomotion.” In: Proceedings of IEEE International Conference on Robotics and Automation (2011) pp. 27052712.Google Scholar
Qiu, C., Wu, Z., Wang, J., Tan, M. and Yu, J., “Locomotion optimization of a tendon-driven robotic fish with variable passive tail fin,” IEEE Trans. Ind. Electron. 70(5), 49834992 (2022).10.1109/TIE.2022.3189093CrossRefGoogle Scholar
Vanderborght, B., Van Ham, R., Lefeber, D., Sugar, T. G. and Hollander, K. W., “Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators,” Int. J. Robot. Res. 28(1), 90103 (2009).10.1177/0278364908095333CrossRefGoogle Scholar
Layer, B. D., Denning, H. and Hill, J. R., “Control and locomotion of tensegrity robots through manipulation of the center of mass,” Robotica 42(9), 28852907 (2024).10.1017/S0263574724001139CrossRefGoogle Scholar
Zhang, J., Shi, J., Zhao, Y., Yang, J., Rajabi, H., Peng, H. and Wu, J., “Bio-inspired tensegrity building block with anisotropic stiffness for soft robots,. IEEE-ASME T. Mech. Early Access (2025). doi: 10.1109/TMECH.2025.3532491.CrossRefGoogle Scholar
Liu, Y. and Jiang, H., “Thrust and drag estimation of a tensegrity robotic tuna by linear acceleration analysis in terms of averaged equation of motion,” J. Bionic. Eng. 21(6), 28042816 (2024).Google Scholar
Testard, N. J., Chevallereau, C. and Wenger, P., “Control analysis of an underactuated bio-inspired robot,” Robotica 42(12), 125 (2024).10.1017/S0263574724001103CrossRefGoogle Scholar
Zheng, Y., Asano, F., Yan, C., Li, L. and Tokuda, I. T., “Tensegrity-based legged robot generates passive walking, skipping, and crawling gaits in accordance with environment,” IEEE-ASME T. Mech. 112. Early Access (2025). doi: 10.1109/TMECH.2024.3522904.Google Scholar
Hao, Y., Wang, X., Song, X., Li, Y., Fu, H., Lee, A., Cheung, K., Lam, J. and Kwok, K. W., “A tensegrity joint for low-inertia, compact, and compliant soft manipulators,” Adv. Intell. Syst. 6(2), 2300079 (2024).10.1002/aisy.202300079CrossRefGoogle Scholar
Chen, B., Jiang, H., Liu, J. and Lu, S., “Joint equivalence design and analysis of a tensegrity joint,” J. Mech. Robot. 13(4), 040911 (2021).10.1115/1.4051106CrossRefGoogle Scholar
Chen, B. and Jiang, H., “Swimming performance of a tensegrity robotic fish,” Soft Robot. 6(4), 520531 (2019).10.1089/soro.2018.0079CrossRefGoogle ScholarPubMed
Azadi, M., Behzadipour, S. and Faulkner, G., “Antagonistic variable stiffness elements,” Mech. Mach. Theory 44(9), 17461758 (2009).10.1016/j.mechmachtheory.2009.03.002CrossRefGoogle Scholar
Zhong, Q., Zhu, J., Fish, F., Kerr, S., Downs, A., Bart-Smith, H. and Quinn, D., “Tunable stiffness enables fast and efficient swimming in fish-like robots,” Sci. Robot. 6(57), eabe4088 (2021).10.1126/scirobotics.abe4088CrossRefGoogle ScholarPubMed
Chakarov, D., “Study of the antagonistic stiffness of parallel manipulators with actuation redundancy,” Mech. Mach. Theory 39(6), 583601 (2004).10.1016/j.mechmachtheory.2003.12.001CrossRefGoogle Scholar
Zhong, Y., Wang, Q., Yang, J. and Wang, C., “Design, modeling, and experiment of underactuated flexible gliding robotic fish,” IEEE-ASME T. Mech. 29(3), 22662276 (2023).10.1109/TMECH.2023.3328034CrossRefGoogle Scholar
Liu, Y., Jiang, H. and Xu, Z., “Development of novel fish-inspired robot with variable stiffness,” Ocean Eng. 305, 118047 (2024).10.1016/j.oceaneng.2024.118047CrossRefGoogle Scholar