Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-10-03T17:38:17.682Z Has data issue: false hasContentIssue false

Design of a bat-inspired flapping-wing robot

Published online by Cambridge University Press:  02 October 2025

Jing-Hu Li
Affiliation:
Department of Mechanical Engineering, Tsinghua University, Beijing, China
Jun-Hao Qiu
Affiliation:
Department of Mechanical Engineering, Tsinghua University, Beijing, China
Jing-Shan Zhao*
Affiliation:
Department of Mechanical Engineering, Tsinghua University, Beijing, China
*
Corresponding author: Jing-Shan Zhao; Email: jingshanzhao@mail.tsinghua.edu.cn

Abstract

Flapping-wing robots, inspired by natural flyers, have gained significant attention for surveillance and environmental monitoring applications. This study presents the design and analysis of a bat-inspired flapping-wing robot with foldable wings, aiming to enhance flight efficiency and maneuverability. The robot features silicone-based, stretchable membrane wings, with a wingspan of 1.4 m and a total mass of 620 g. A one-degree-of-freedom (DOF) revolute-spherical-spherical-revolute mechanism is used to reproduce the flapping motion, while a one-DOF Watt six-bar linkage mechanism enables dynamic wing folding, allowing adaptive wing shape modulation during flight. Explicit solutions for joint angle of the wing were expressed through analytical method. Flight tests were conducted to validate the effectiveness of the flapping-folding mechanism. Results show that the robot successfully replicates bat wing kinematics, with folding during the upstroke and unfolding during the downstroke. This research offers insights into bio-inspired wing designs for next-generation flapping-wing robots.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ma, H., Gong, P., Tian, Y., Wu, Q., Pan, M., Yin, H., Liu, Y. and Chen, C., “HiFly-dragon: A dragonfly inspired flapping flying robot with modified, resonant, direct-driven flapping mechanisms,” Drones 8(4), 126 (2024).10.3390/drones8040126CrossRefGoogle Scholar
Wu, C., Xiao, Y., Zhao, J., Mou, J., Cui, F. and Liu, W., “A multi-modal tailless flapping-wing robot capable of flying, crawling, self-righting and horizontal take-off,” IEEE Robot. Autom. Lett. 9, 47344741 (2024).10.1109/LRA.2024.3384910CrossRefGoogle Scholar
Wang, C., Zhang, W., Zou, Y., Meng, R., Zhao, J. and Wei, M., “A sub-100 mg electromagnetically driven insect-inspired flapping-wing micro robot capable of liftoff and control torques modulation,” J. Bionic Eng. 17, 10851095 (2020).10.1007/s42235-020-0103-7CrossRefGoogle Scholar
Sihite, E., Kelly, P. and Ramezani, A., “Computational structure design of a bio-inspired armwing mechanism,” IEEE Robot. Autom. Lett. 5(4), 59295936 (2020).10.1109/LRA.2020.3010217CrossRefGoogle Scholar
Xu, H., Wang, Y., Pan, E., Xu, W. and Xue, D., “Autonomous formation flight control of large-sized flapping-wing flying robots based on leader–follower strategy,” J. Bionic Eng. 20(6), 25422558 (2023).10.1007/s42235-023-00402-5CrossRefGoogle Scholar
Huang, H., He, W., Wang, J., Zhang, L. and Fu, Q., “An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight,” IEEE/ASME Trans. Mechatron. 27(6), 54845494 (2022).10.1109/TMECH.2022.3182418CrossRefGoogle Scholar
Tsuchiya, S., Aono, H., Asai, K., Nonomura, T., Ozawa, Y., Anyoji, M., Ando, N., Kang, C. and Pohly, J., “First lift-off and flight performance of a tailless flapping-wing aerial robot in high-altitude environments,” Sci. Rep. 13(1), 8995 (2023).10.1038/s41598-023-36174-5CrossRefGoogle ScholarPubMed
Swartz, S. M. and Konow, N., “Advances in the study of bat flight: The wing and the wind,” Can. J. Zool. 93(12), 977990 (2015).10.1139/cjz-2015-0117CrossRefGoogle Scholar
Ingersoll, R., Haizmann, L. and Lentink, D., “Biomechanics of hover performance in Neotropical hummingbirds versus bats,” Sci. Adv. 4(9), eaat2980 (2018).10.1126/sciadv.aat2980CrossRefGoogle ScholarPubMed
Hedenström, A. and Johansson, L. C., “Bat flight: Aerodynamics, kinematics and flight morphology,” J. Exp. Biol. 218(5), 653663 (2015).10.1242/jeb.031203CrossRefGoogle ScholarPubMed
Frank, H. K., Frishkoff, L. O., Mendenhall, C. D., Daily, G. C. and Hadly, E. A., “Phylogeny, traits, and biodiversity of a Neotropical bat assemblage: Close relatives show similar responses to local deforestation,” Am. Nat. 190(2), 200212 (2017).10.1086/692534CrossRefGoogle ScholarPubMed
Singh, S. K., Zhang, L. B. and Zhao, J. S., “Direct measurements of the wing kinematics of a bat in straight flight,” J. Biomech. Eng. 143(4), 041006 (2021).10.1115/1.4049161CrossRefGoogle ScholarPubMed
Yin, D. F. and Zhang, Z. S., “Design, fabrication and kinematics of a bio-inspired robotic bat wing,” Sci. China Technol. Sci. 59, 19211930 (2016).10.1007/s11431-016-0299-2CrossRefGoogle Scholar
Ruiz, C., Acosta, J. A. and Ollero, A., “Optimal elastic wing for flapping-wing robots through passive morphing,” IEEE Robot. Autom. Lett. 8(2), 608615 (2022).10.1109/LRA.2022.3226065CrossRefGoogle Scholar
Shakiba, S., Ayati, M. and Yousefi-Koma, A., “Development of hybrid prandtl–ishlinskii and constitutive models for hysteresis of shape-memory-alloy-driven actuators,” Robotica 39(8), 13901404 (2021).10.1017/S026357472000123XCrossRefGoogle Scholar
Duan, B., Guo, C. and Liu, H., “Aerodynamic analysis for a bat-like robot with a deformable flexible wing,” Robotica 41(1), 306325 (2023).10.1017/S0263574722001308CrossRefGoogle Scholar
Duan, B., Guo, C., Mao, T. and Liu, H., “Wing geometry and kinematic parameters optimization of bat-like robot fixed-altitude flight for minimum energy,” Aerosp. Sci. Technol. 140, 108482 (2023).10.1016/j.ast.2023.108482CrossRefGoogle Scholar
Chen, A., Song, B., Wang, Z., Xue, D. and Liu, K., “A novel actuation strategy for an agile bioinspired FWAV performing a morphing-coupled wingbeat pattern,” IEEE Trans. Robot. 39(1), 452469 (2022).10.1109/TRO.2022.3189812CrossRefGoogle Scholar
Bie, D., Li, D., Xiang, J., Li, H., Kan, Z. and Sun, Y., “Design, aerodynamic analysis and test flight of a bat-inspired tailless flapping wing unmanned aerial vehicle,” Aerosp. Sci. Technol. 112, 106557 (2021).10.1016/j.ast.2021.106557CrossRefGoogle Scholar
Hoff, J., Ramezani, A., Chung, S. J. and Hutchinson, S., “Optimizing the structure and movement of a robotic bat with biological kinematic synergies,” Int. J. Robot. Res. 37(10), 12331252 (2018).10.1177/0278364918804654CrossRefGoogle Scholar
Ramezani, A., Chung, S. J. and Hutchinson, S., “A biomimetic robotic platform to study flight specializations of bats,” Sci. Robot. 2(3), eaal2505 (2017).10.1126/scirobotics.aal2505CrossRefGoogle ScholarPubMed
Colorado, J., Barrientos, A., Rossi, C. and Breuer, K. S., “Biomechanics of smart wings in a bat robot: Morphing wings using SMA actuators,” Bioinspir. Biomim. 7(3), 036006 (2012).10.1088/1748-3182/7/3/036006CrossRefGoogle Scholar
Sui, T., Zou, T. and Riskin, D., “Optimum design of a novel bio-inspired bat robot,” IEEE Robot. Autom. Lett. 7(2), 34193426 (2022).10.1109/LRA.2022.3146536CrossRefGoogle Scholar
Colorado, J., Rossi, C., Zhang, C. and Barrientos, A., “Towards efficient flight: Insights on proper morphing-wing modulation in a bat-like robot,” Adv. Robot. 29(24), 15991610 (2015).10.1080/01691864.2015.1082501CrossRefGoogle Scholar
Sui, T. and Zou, T., “A review of bat-inspired shape morphing robotic design,” J. Mech. Robot. 14(5), 050801 (2022).10.1115/1.4053686CrossRefGoogle Scholar
Cheney, J. A., Ton, D., Konow, N., Riskin, D. K., Breuer, K. S. and Swartz, S. M., “Hindlimb motion during steady flight of the lesser dog-faced fruit bat, Cynopterus brachyotis,” PLoS One 9(5), e98093 (2014).10.1371/journal.pone.0098093CrossRefGoogle ScholarPubMed
Riskin, D. K., Willis, D. J., Iriarte-Diaz, J., Hedrick, T. L., Kostandov, M., Chen, J., Laidlaw, D. H., Breuer, K. S. and Swartz, S. M., “Quantifying the complexity of bat wing kinematics,” J. Theor. Biol. 254(3), 604615 (2008).10.1016/j.jtbi.2008.06.011CrossRefGoogle ScholarPubMed