No CrossRef data available.
Published online by Cambridge University Press: 02 October 2025
Flapping-wing robots, inspired by natural flyers, have gained significant attention for surveillance and environmental monitoring applications. This study presents the design and analysis of a bat-inspired flapping-wing robot with foldable wings, aiming to enhance flight efficiency and maneuverability. The robot features silicone-based, stretchable membrane wings, with a wingspan of 1.4 m and a total mass of 620 g. A one-degree-of-freedom (DOF) revolute-spherical-spherical-revolute mechanism is used to reproduce the flapping motion, while a one-DOF Watt six-bar linkage mechanism enables dynamic wing folding, allowing adaptive wing shape modulation during flight. Explicit solutions for joint angle of the wing were expressed through analytical method. Flight tests were conducted to validate the effectiveness of the flapping-folding mechanism. Results show that the robot successfully replicates bat wing kinematics, with folding during the upstroke and unfolding during the downstroke. This research offers insights into bio-inspired wing designs for next-generation flapping-wing robots.