No CrossRef data available.
Published online by Cambridge University Press: 02 June 2025
In response to the auxiliary requirements for the treatment and prevention of lumbar diseases, based on the biomechanical characteristics of the human waist, a novel unpowered rigid-flexible coupling waist exoskeleton with multiple degrees of freedom and its human-exoskeleton parallel wearable equivalent research prototype are proposed, further focusing on the encompassing kinematic compatibility and dynamic load-bearing effectiveness of the biomimetic coordination, an in-depth analysis is performed on the multi-body dynamic dimensional synthesis and its methodological research. Initially, based on the rigid-flexible coupling characteristics and experimental biomechanical data of the lumbar region in the sagittal plane, an accurate multi-body system dynamics model of the research prototype, which incorporates the rigid-flexible coupling characteristics, is systematically constructed. Subsequently, to effectively quantify the biomimetic coordination of the exoskeleton, a novel comprehensive optimization index, termed biomimetic load-bearing comfort, is proposed. Finally, by utilizing this index, the exoskeleton is optimized in dimension by employing a thorough combination of multi-dimensional spatial search algorithm and compression factor particle swarm algorithm. The simulation results validate the correctness and effectiveness of both the dynamic dimensional synthesis and its methodology. Furthermore, the study also reveals that the optimized exoskeleton’s passive working mode showcases favorable biomimetic coordination. These results are crucial for progressing the research on the biomimetic load-bearing capacities of other exoskeletons.