Skip to main content
×
×
Home

Fuzzy weighted subtask controller for redundant manipulator

  • Young jun Yoo (a1), Dae sung Jung (a1), Yu jin Jang (a2) and Sang chul Won (a1)
Summary
SUMMARY

We propose a fuzzy weighted subtask controller for a redundant robot manipulator. To expand the feasibility of the inverse kinematic solution, we introduce a weighted pseudo-inverse that changes the null-space of the Jacobian. The weights of elements in the pseudo-inverse are obtained using fuzzy rules that are related to the null-space velocity tracking error. With the pseudo-inverse, we develop a task space controller to track a desired task space trajectory and subtask control input. We propose a weighted subtask controller for multiple subtasks. The results of a simulation and experiment using a seven-degree-of-freedom whole arm manipulator robot show the effectiveness of the proposed controller with multiple subtasks.

Copyright
Corresponding author
*Corresponding author. E-mail: won@postech.ac.kr
References
Hide All
1.Risse W. and Hiller M. H., “Dextrous Motion Control of a Redundant SCARA Robot,” Proceedings of the Industrial Electronics Conference (IECON 1998), Aachen, Germany (Aug. 31–Sep. 4, 1998) pp. 24462451.
2.Le Boudec B., Saad M. and Nerguizian V., “Modeling and adaptive control of redundant robots,” Math. Comput. Simul. 71 (4–6), 395403 (2006).
3.Zergeroglu E., Dawson D. M., Walker I. and Behal A., “Nonlinear tracking control of kinematically redundant robot manipulators,” IEEE/ASME Trans. Mechatronics 9 (1), 129132 (2004).
4.Ozbay U., Sahin H. T. and Zergeroglu E., “Robust tracking control of kinematically redundant robot manipulators subject to multiple self-motion criteria,” Robotica 26 (6), 711728 (2008).
5.Cleary K. R. and Tesar D., “Incorporating Multiple Criteria in the Operation of Redundant Manipulators of Robotics and Automation,” Proceedings of the IEEE International Conference, Cincinnati, Ohio (May. 13–18, 1999), pp. 618624.
6.Siciliano B., “Kinematic control of redundant robot manipulators: A tutorial,” J. Intell. Robot. Syst. 3 (3), 201212 (1990).
7.Liegeois A., “Automatic supervisory control of the configuration and behavior of multibody mechanisms,” IEEE Trans. Syst. Man Cybern. SMC–7 (12), 868871, (1977).
8.Nakamura Y., Hanafusa H. and Yoshikawa T., “Task-priority based redundancy control of robot manipulators,” Int. J. Robot. Res. 6 (2), 315 (1987).
9.Chiaverini S., “Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators,” IEEE Trans. Robot. Autom. 13 (3), 398410 (1997).
10.Chiacchio P., Chiaverini S. and Sciavicco L., “Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy,” Int. J. Robot. Res. 10 (4), 410425 (1991).
11.Antonelli G., “Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems,” IEEE Trans. Robot. 25 (5), 985994 (2009).
12.Baillieul J., “Kinematic Programming Alternatives for Redundant Manipulators,” Proceedings of the IEEE International Conference of Robotics and Automation, St. Louis, Missouri (Mar. 25–28, 1985) pp. 722728.
13.Egeland O., “Task-space tracking with redundant manipulators,” IEEE J. Robot. Autom. RA–3 (5), 471475 (1987).
14.Sciavicco L. and Siciliano B., “A solution algorithm to the inverse kinematic problem for redundant manipulators,” IEEE J. Robot. Autom. 4 (4), 403410 (1988).
15.Chan T. F. and Dubey R. V., “A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators,” IEEE Trans. Robot. Autom. 11 (2), 286292 (1995).
16.Shen W. and Gu J., “Multi-criteria Kinematics Control for the pa10-7c Robot Arm with Robust Singularities,” Proceedings of the IEEE International Conference of Robotics and Biomimetics, Yalong Bay, Sanya, China (Dec. 15–18, 2007) pp. 12421248.
17.Xiang J., Zhong C. and Wei W., “General-weighted least-norm control for redundant manipulators,” IEEE Trans. Robot. 26 (4), 660669 (2010).
18.Maciejewski A. A. and Klein C. A., “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,” Int. J. Robot. Res. 4, 109117 (1985).
19.Tatlicioglu E., McIntyre M., Dawson D. and Walker I., “Adaptive Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators with Sub-Task Extensions,” Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05 Seville, Spain (Dec. 12–15, 2005) pp. 43734378.
20.Tatlicioglu E., McIntyre M. and Dawson D., “Adaptive nonlinear tracking control of kinematically redundant robot manipulators with sub-task extensions,” Clemson University CRB Technical Report (2005).
21.Tatlicioglu E., Braganza D., Burg T. C. and Dawson D. M., “Adaptive control of redundant robot manipulators with sub-task objectives,” Robotica 27 (6), 873881 (2009).
22.Nath N., Tatlicioglu E. and Dawson D. M., “Teleoperation with kinematically redundant robot manipulators with sub-task objectives,” Robotica 27 (7), 10271038 (2009).
23.Nath N., Tatlicioglu E. and Dawson D. M., “Teleoperation with Kinematically Redundant Robot Manipulators with Sub-Task Objectives,” Proceedings of the IEEE Conference on Decision and Control, Cancun, Maxico (Dec. 9–11, 2008) pp. 43204325.
24.Yoo Y. J., Jung D. S. and Won S. C.Multi-subtask Controllers of the Redundant Robot Manipulator,” Proceedings of the 37th Annual Conference on IEEE Industrial Electronics Society (IECON 2011), Melbourne, Australia (Nov. 7–10, 2011) pp. 227232.
25.Choi B. W., Won J. H. and Chung M. J., “Optimal redundancy resolution of a kinematically redundant manipulator for a cyclic task,” J. Robot. Syst. 9 (4), 481503 (1992).
26.Suh K. C. and Hollerbach J. M., “Local Versus Global Torque Optimization of Redundant Manipulators,” IEEE International Conference on Robotics and Automation, Raleigh, North Caroliina (Mar. 31–Apr. 3, 1987) pp. 614624.
27.Martin D. P., Baillieul J. and Hollerbach J. M., “Resolution of kinematic redundancy using optimization techniques,” IEEE Trans. Robot. Autom. 5 (4), 529533 (1989).
28.Jang Y. J. and Kim S. W., “An estimation of a billet temperature during reheating furnace operation,” Int. J. Control Autom. Syst. 5 (1), 4350 (2007).
29.Kim J. W., Kim T. G., Park Y. S. and Kim S. W., “On-load motor parameter identification using univariate dynamic encoding algorithm for searches,” IEEE Tran. Energy Convers. 23 (3), 804813 (2008).
30.Kim J. W., Kim T. G., Choi J. Y. and Kim S. W., “On the global convergence of univariate dynamic encoding algorithm for searches (uDEAS),” Int. J. Control Autom. Syst. 6 (4), 571582 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Robotica
  • ISSN: 0263-5747
  • EISSN: 1469-8668
  • URL: /core/journals/robotica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 166 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th February 2018. This data will be updated every 24 hours.